Synthesis and Structure of Tetraphenylphosphonium Carboxylates [Ph4P][OC(O)C6H3 (OH) 2-2,6], [Ph4P][OC(O)CH2CH2C(O)OH]

Yu. O. Gubanova, O. K. Sharutina

Abstract


Tetraphenylantimony 2,6-dihydroxybenzoate benzene solvate (1) and hydrogen succinate (2) were obtained by the interaction between pentaphenylphosphorus (0.5 mol benzene solvate) with dihydroxybenzoic and succinic acids at room temperature in benzene solution. The compounds have been characterized by IR-spectroscopy and X-ray analysis. The absorption bands of the carbonyl groups are present in the IR-spectra, recorded on a Shimadzu IRAffinity-1SIR-Fourier spectrometer in the 4000–400 cm–1 area in KBr pellets, at the 1637 cm−1 frequency. According to the X-ray analysis, carried out on a D8 QUEST Bruker diffractometer, the compound unit cell parameters are: triclinic syngony, P (1), P212121 (2) symmetry group; а10.914(6) (1), 7.762(6) (2), b 13.701(9) (1), 13.986(9) (2), c 19.661(12) (1), 22.046(14) (2) Å, α 99.53(3)° (1), 90.00° (2), β 105.226(16)° (1), 90.00° (2), γ 91.70(2)° (1), 90.00° (2), V 2789(3) (1), 2393(3) (2) Å3. The crystals of tetraphenylphosphonium carboxylates consist of the tetrahedral tetraphenylphosphonium cations and single-charged carboxylate anions. The valence angles in tetraphenylphosphonium cations equal 107.75(10)–112.88(10)°, 106.30(10)–113.77(10)° (1) and 107.72(17)–110.65(17)° (2). The P–C distances equal 1.783(2)–1.799(2) Å (1) and 1.793(4)–1.799(4) Å (2). The structural organization of the crystals is due to the weak interionic СPh−Н···О-type hydrogen bonds with the involvement of the carboxylate groups. In the case of tetraphenylphosphonium 2,6-dihydroxybenzoate benzene solvate the СPh−Н···О hydrogen bonds with the involvement of the hydrogen atom of the benzene solvating molecule are also observed.

Keywords


pentaphenylphosphorus; 2,6-dihydroxybenzoic acid; succinic acid; carboxylates; tetraphenylphosphonium; X-ray analysis

References


Wheatley, P.J. The Crystal and Molecular Structure of Pentaphenylphosphorus / P.J. Wheatley // J. Chem. Soc. – 1964. – P. 2206–2222. DOI: 10.1039/JR9640002206.

Carbodicarbenes: Unexpected π-Accepting Ability during Reactivity with Small Molecules /

W.-Ch. Chen, W.-Ch. Shih, T. Jurca et al. // J. Am. Chem. Soc. – 2017. – V. 139. – P. 12830–12836. DOI: 10.1021/jacs.7b08031.

The Chemistry of Heteroarylphosphorus Compounds, Part 16. An X-Ray Structural Study of (2-Thienyl)bis(2,2′-biphenylylene)phosphorane. A Comparison with Related Methyl and Aryl bis(2,2′- biphenylylene)-spirophosphoranes / D.W. Allen, L.A. March, I.W. Nowell at al. // Z. Naturforsch. B. Chem. Sci. – 1983. – Bd. 38. – P. 465–469. DOI: 0340-5087/83/0400-0465/$ 01.00/0.

Formation of a Dicyanotriorganophosphorane from the Reaction of Triphenylphosphane with Phenylselenocyanate / N.A. Barnes, S.M. Godfrey, R.T.A. Halton et al. // Angew. Chem. Int. Ed. – 2006. – V. 45. – P. 1272–1275. DOI: 10.1002/anie.200503335.

5-Organyl-5-phosphaspiro[4.4]nonanes: A Contribution to the Structural Chemistry of Spirocyclic Tetraalkylphosphonium Salts and Pentaalkylphosphoranes / U. Monkowius, N.W. Mitzel, A. Schier et al. // J. Am. Chem. Soc. – 2002. – V. 124. – P. 6126–6132. DOI: 10.1021/ja012041g

Diphosphanylketenimines: New Reagents for the Synthesis of Unique Phosphorus Heterocycles / J. Ruiz, F. Marquínez, V. Riera et al. // Chem.-Eur. J. – 2002. – V. 8. – P. 3872–3878. DOI: 10.1002/1521-3765(20020902)8:17.

Muller, G. Crystal and Molecular Structure of P(C6H5)5∙0.5THF / G. Muller, U. J. Bildmann // Z. Naturforsch. B. Chem. Sci. – 2004. – Bd. 59, № 11–12. – P. 1411–1414. DOI: 10.1515/znb-2004-11-1207. DOI: 10.1021/ic50214a011.

Day, R.O. Molecular Structure of the Methyl and Phenyl Derivatives of Bis(2,2’-biphenylylene)phosphorane / R.O. Day, S. Husebye, R.R. Holmes // Inorg. Chem. – 1980. – V. 19. – P. 3616–3622. DOI: 10.1021/ic50214a011.

A Facile Access to lλ5,3λ5 -Benzodiphospholes / H.J. Bestmann, H.P. Oechsner, C. Egerer-Sieber et al. // Angew. Chem. Int. Ed. – 1995. – V. 34. – P. 2017–2020. DOI: 10.1002/anie.199520171.

Термолиз пентафенилфосфорана в присутствии диоксида углерода / В.В. Шарутин, В.Т. Бычков, В.А. Лебедев и др. // Журн. общ. химии. – 1986. – Т. 56, № 2. – С. 325–328.

Alkyloxy- and Silyloxy-Derivatives of P(V) and Sb(V) / G.A. Razuvaev, N.A. Osanova,

T.G. Brilkina et al. // J. Organometal. Chem. – 1975. – V. 99, № 1. – P. 93–106. DOI: org/10.1016/S0022-328X(00)8636.

Карбоксилаты и сульфонаты тетрафенилфосфора. Синтез и строение / В.В. Шарутин, В.С. Сенчурин, О.К. Шарутина и др. // Журнал общей химии. – 2009. – Т. 79. – С. 80–89. DOI:org/10.1134/S1070363209010125.

Tetraphenylphosphonium 2,4,5-Tricarboxybenzoate / G.-D. Yang, J.-C. Dai, W.-S. Wu et al. // Acta Crystallogr. Sect. E: Struct. Rep. Online. – 2007. – V. E63. – P. o1010–o1011. DOI: 10.1107/S1600536807004163.

2-Hydroxyisophthalic Acid: Hydrogen-Bonding Patterns in the Monohydrate and the Tetraphenylphosphonium salt. An Instance of Dramatic Acidity Enhancement by Symmetric, Internally Hydrogen-Bonded Anion Stabilization / S. Bawa, M.L. Cole, P. Dubois et al. // Acta Crystallogr., Sect. B: Struct. Sci. – 2004. – V. 60. – P. 438–446. DOI: 10.1107/S0108768104012686.

Synthesis and Structures of Perthio- and Polymeric Metal Complexes With the Tetrathio- and Dithioterephthalate Ligands / A.R. Paital, J. Zhan, R. Kim et al. // Polyhedron. – 2013. – V. 64. – P. 328–338. DOI: 10.1016/j.poly.2013.06.003.

Tetraphenylphosphonium Hydrogen Oxalate / P.A.W. Dean, D.C. Craig, M.L. Scudder et al. // Acta Crystallogr., Sect. E: Struct. Rep. Online. – 2008. – V. 64. – P. o243. DOI: 10.1107/S160053680706463X

A Simple Complex on the Verge of Breakdown: Isolation of the Elusive Cyanoformate Ion / L.J. Murphy, K.N. Robertson, S.G. Harroun et al. // Science. – 2014. – V. 344. – P. 75–78. DOI: 10.1126/science.1250808.

Rhenium and Molybdenum Oxo-Complexes Containing Ligands Related to NHydroxyiminodipropionic Acid / S.M. Harben, P.D. Smith, R.L. Beddoes et al. // J. Chem. Soc., Dalton Trans. – 1997. – № 16. – P. 2777–2784. DOI: 10.1039/A701015J.

Oxorhenium(V) and Oxotechnetium(V) Complexes of Cysteine / M. Chatterjee, B. Achari, S. Das et al. // Inorg.Chem. – 1998. – V. 37. – P. 5424–5430. DOI: 10.1021/ic970577q.

Cationic Induced Assembly of Two 2D Zinc–Terephthalate Polymeric Networks / Y.-X. Lian, G.-D. Yang, Z.-Y. Fu et al. // Inorg. Chim. Acta. – 2009. – V. 362. – P. 3901–3909. DOI: 10.1016/j.ica.2009.05.009.

Взаимодействие 1,4-бензохинонов с Р-Н-фосфониевыми солями / Н.Р. Хасиятуллина, А.М. Вазыхова, Ю.К. Воронина и др. // Журн. общ. химии. – 2017. – Т. 87, № 9. – С. 1451–1457. DOI: 10.1134/S1070363217090079.

Синтез и строение карбоксилатов тетрафенилфосфония / В.В. Шарутин, О.К. Шарутина, А.В. Рыбакова и др. // Журн. общ. химии. – 2018. – Т. 88, № 8. – С. 1308−1313. DOI: 10.1134/S0044460X18080139.

On a Novel Synthesis of 2-Sulfonatobenzoic Acid by Oxidation of Thiosalicylic Acid Catalyzed by Copper(II): a Structural Study / E.G. Ferrer, P.A.M. Williams, E.E. Castellano et al. // Z. Anorg. Allg. Chem. – 2002. – V. 628. – P. 1979–1984. DOI: 10.1002/1521-3749(200209)628:9/10<1979::aid-zaac1979>3.0.co;2-v.

Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for

the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

OLEX2: a Complete Structure Solution, Refinement and Analysis Program / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea et al. // J. Appl. Cryst. – 2009. – V. 42. – P. 339–341.

Тарасевич, Б.Н. ИК-спектры основных классов органических соединений: справочные материалы / Б.Н. Тарасевич. – М.: МГУ имени М.В. Ломоносова, 2012. – 55 с.


Refbacks

  • There are currently no refbacks.