Uranium Concentrations in Tissues and Other Clinical Samples of the Serbian Population

A. Stojsavljević, V. V. Avdin, D. A. Zherebtsov, D. Manojlović

Abstract


The prevalence of numerous malignant diseases is on the rise, while the mechanism of metal-induced oncogenesis has not been elucidated so far. The aim of this study was to determine the amount of uranium (U) in blood samples of the Serbian population (n = 305) and to perform a comparative analysis with the amounts of U in the blood of patients with thyroid carcinoma (TC, n = 103) and malignant brain tumors (MBTs, n = 157). This study also aimed to extend data on the tissue sample analysis. Uranium was quantified by inductively coupled quadrupole plasma mass spectrometry (ICP-Q-MS). The content of U was approximately 15 times higher in the Serbian population compared to other population groups worldwide that did not suffer from the war, while its amount showed similarities with the countries that directly suffered from the war. Furthermore, the U content was up to twice as high in the blood samples of TC patients compared to the control, while the U content in the TC tissue samples was approximately 10 times higher than in healthy thyroid tissues and showed a tendency to be higher in follicular variant of papillary thyroid carcinoma. However, the highest alterations in U content were obtained in samples of MBT patients, both in liquid clinical samples (serum, lysate, and cerebrospinal fluid) and in tissue samples. The results of this study could highlight the unresolved etiology of TC and MBT. Moreover, the reported results indicated the importance of regular monitoring of U in the blood of the Serbian population.


Keywords


Uranium; Serbian population; Thyroid carcinomas; Malignant brain tumors; Etiology

Full Text:

PDF

References


Hug B., Ammitzboell N.P. Consequences of the Bombing of the Federal Republic of Yugoslavia with Depleted Uranium in 1999. Curr. Conserns, 2019, no. 6–7, pp. 5–6.

Lestaevel P., Houpert P., Bussy C., Dhieux B., Gourmelon P., Paquet F. The Brain is a Target Organ after Acute Exposure to Depleted Uranium. Toxicology, 2005, vol. 212, no. 2–3, pp. 219–226. DOI: 10.1016/j.tox.2005.05.002

Zoriy M.V., Dehnhardt M., Reifenberger G., Zilles K., Becker J.S. Imaging of Cu, Zn, Pb and U in Human Brain Tumor Resections by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. International Journal of Mass Spectrometry, 2006, vol. 257, no. 1–3, pp. 24–33.

DOI: 10.1016/j.ijms.2006.06.005

Bakrač S.T., Klem E., Milanović M. Ekološke Posledice NATO Bombardovanja Republike Srbije 1999 Godine. Vojno Delo, 2018, vol. 70, no. 7, pp. 475–492. DOI: 10.5937/vojdelo1807475B

Venus M., Puntarić D., Gvozdić V., Vidosavljević D., Bijelić L., Puntarić A., Puntarić E., Vidosavljević M., Jergović M., Šabarić J. Determinations of Uranium Concentrations in Soil, Water, Vegetables and Biological Samples from Inhabitants of War Affected Areas in Eastern Croatia (ICP-MS method). Journal of Environmental Radioactivity, 2019, vol. 203, pp. 147–153. DOI: 10.1016/j.jenvrad.2019.03.004

Becker, J.S. Bioimaging of Metals in Brain Tissue from Micrometer to Nanometer Scale by Laser Ablation Inductively Coupled Plasma Mass Spectrometry: State of the Art and Perspectives. Interna-tional Journal of Mass Spectrometry, 2010, vol. 2, pp. 65–75. DOI: 10.1039/B916722F

Dinocourt C., Legrand M, Dublineau I., Lestaevel P. The Neurotoxicology of Uranium. Toxicol-ogy, 2015, vol. 337, pp. 58–71. DOI: 10.1016/j.tox.2015.08.004

Zheng W., Aschner M., Ghersi-Egea J.F. Brain Barrier Systems: a New Frontier in Metal Neurotoxicological Research. Toxicology and Applied Pharmacology, 2003, vol. 192, no. 1, pp. 1–11. DOI:10.1016/s0041-008x(03)00251-5

Salama E., El-Kameesy S.U., Elrawi R. Depleted Uranium Assessment and Natural Radioactivity Monitoring in North West of Iraq over a Decade since the Last Gulf War. Journal of Environmental Ra-dioactivity, 2019, vol. 201, pp. 25–31. DOI: 10.1016/j.jenvrad.2019.01.017

Strong M.J., Garces J., Vera J.C., Mathkour M., Emerson N., Ware M.L. Brain Tumors: Epide-miology and Current Trends in Treatment. Brain Tumors Neurooncol, 2015, vol. 1, pp. 1–21.

DOI: 10.4172/2475-3203.1000102

Persaud-Sharma D., Burns J., Trangle J., Moulik S. Disparities in Brain Cancer in the United States: A Literature Review of Gliomas. Medical Sciences, 2017, vol. 5, no. 3, pp. 1–17. DOI: 10.3390/medsci5030016

Wandzilak A., Czyzycki M., Radwanska E., Adamek D., Geraki K., Lankocz M. X-ray Fluores-cence Study of the Concentration of Selected Trace and Minor Elements in Human Brain Tumours. Spectrochimica Acta Part B, 2015, vol. 114, pp. 52–57. DOI: 10.1016/j.sab.2015.10.002

Caffo M., Caruso G., La Fata G., Barresi V., Visalli M., Venza M., Venza I. Heavy Metals and Epigenetic Alterations in Brain Tumors. Current Genomics, 2014, vol. 15, no. 6, pp. 457–463. DOI: 10.2174/138920291506150106151847

Arslan M., Demir H., Arslan H., Gokalp A.S., Demir C. Trace Elements, Heavy Metals and Other Biochemical Parameters in Malignant Glioma Patients. Asian Pacific Journal Cancer Prevention, 2011, vol. 12. no. 2, pp. 447–451.

McFaline-Figueroa J. R., Lee E.Q. Brain Tumors. American Journal of Medicine, 2018, vol. 131. no. 8, pp. 874–882. DOI: 10.1016/j.amjmed.2017.12.039.

Floriańczyk B., Kaczmarczyk R., Osuchowski J., Trojanowski T. Metallothionein and Manga-nese Concentrations in Brain Tumors. Journal of Preclinical and Clinical Research, 2007, vol. 1. no. 1, pp. 89–91.

Stojsavljević A., Vujotić L., Rovčanin B., Borković-Mitić S., Gavrović-Jankulović M., Manojlović D. Assessment of Trace Metal Alterations in the Blood, Cerebrospinal Fluid and Tissue Samples of Patients with Malignant Brain Tumors. Scientific Reports, 2020, vol. 10, Article number: 3816. DOI: 10.1038/s41598-020-60774-0

Goullé J.P., Mahieu L., Castermant J., Neveu N., Bonneau L., Lainé G., Bouige D., Lacroix C. Metal and Metalloid Multi-Elementary ICP-MS Validation in Whole Blood, Plasma, Urine and Hair. Reference values. Forensic Science International, 2005, vol. 153. no. 1, pp. 39–44. DOI: 10.1016/j.forsciint.2005.04.020

Heitland P., Köster H.D. Biomonitoring of 37 Trace Elements in Blood Samples from Inhabit-ants of Northern Germany by ICP-MS. Journal of Trace Elements in Medicine and Biology, 2006, vol. 20. no. 4, pp. 253–262. DOI: 10.1016/j.jtemb.2006.08.001

Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Piñeros M., Znaor A., Bray F. Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 2019, vol. 144. no. 8, pp. 1941–1953. DOI: 10.1002/ijc.31937

Slijepcevic N., Zivaljevic V., Paunovic I., Diklic A., Zivkovic P., Miljus D., Grgurevic A., Sipetic S. Rising Incidence of Thyroid Cancer in Serbia. Hippokratia, 2016, vol. 20. no. 1, pp. 9–23.

Briner, W. The Toxicity of Depleted Uranium. International Journal of Environmental Research and Public Health, 2010, vol. 7. no. 1, pp. 303–313. DOI: 10.3390/ijerph7010303

Civit T., Houdayer A.J., Kennedy G. A Search for Trace Elements in Some Human Intracranial Tumors by Instrumental Neutron Activation Analysis. Biological Trace Element Research, 2000, vol. 74, pp. 203–210. DOI: 10.1385/BTER:74:3:203

Sarap N.B., Janković M.M., Todorović D.J., Nikolić J.D., Kovačević M.S. Environmental Radi-oactivity in Southern Serbia at Locations where Depleted Uranium was Used. Arhiv za Higijenu Rada i Toksikologiju, 2014, vol. 56. no. 2, pp. 189–197. DOI: 10.2478/10004-1254-65-2014-2427

Todorov T.I., Xu H., Ejnik J.W., Mullick F.G., Squibb K., McDiarmid M.A., Centeno J.A. De-pleted Uranium Analysis in Blood by Inductively Coupled Plasma Mass Spectrometry. Journal of Ana-lytical Atomic Spectrometry, 2009, vol. 24, pp. 189–193. DOI: 10.1039/B816058A


Refbacks

  • There are currently no refbacks.