Сорбция комплексов титана с органическими кислотами на оксиде титана (IV)
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Diebold U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep., 2003, vol. 5–8 (48), pp. 53–229. DOI: 10.1016/S0167-5729(02)00100-0
Truong Q.D., Dien L.X., Vo D.-V.N., Le T.S. Controlled Synthesis of Titania Using Water-Soluble Titanium Complexes. J. Solid State Chem., 2017, vol. 251, pp. 143–163. DOI: 10.1016/j.jssc.2017.04.017
Kharkar D.P., Patel C.C. Peroxy Titanium Oxalate. Proc. Indian Acad. Sci., 1956, vol. 44, pp. 287–306. DOI: 10.1007/BF03046055
Collins J.M., Uppal R., Incarvito C.D., Valentine A.M. Titanium(IV) Citrate Speciation and Structure under Environmentally and Biologically Relevant Conditions. Inorg. Chem., 2005, vol. 44, pp. 3431–3440. DOI: 10.1021/ic048158y
Rhine W.E., Hallock R.B., Davis W.M., Wong-Ng W. Synthesis and Crystal Structure of Barium Titanyl Oxalate, BaTi(O)(C2O4)2.5H2O: a Molecular Precursor for Barium Titanate (BaTiO3). Chem. Mater., 1992, vol. 4, pp. 1208–1216. DOI: 10.1021/cm00024a019
Nolan N.T., Seery M.K., Pillai S.C. Spectroscopic Investigation of the Anatase-to-Rutile Trans-formation of Sol-Gel-Synthesized TiO2 Photocatalysts. J. Phys. Chem. C., 2009, vol. 36 (113), pp. 16151–16157. DOI: 10.1063/1.5082479
Pambudi A.B., Kurniawati R., Iryani A. Effect of Calcination Temperature in the Synthesis of Carbon Doped TiO2 Without External Carbon Source. AIP Conf. Proc., 2018, vol. 2049, pp. 1–5. DOI: 10.1063/1.5082479
Kinsinger N.M., Wong A., Li D., Villalobos F., Kisailus D. Nucleation and Crystal Growth of Nanocrystalline Anatase and Rutile Phase TiO2 from a Water-Soluble Precursor. Cryst. Growth Des., 2010, vol. 10, pp. 5254–5261. DOI: 10.1021/cg101105t
Zhou H., Sun S., Ding H. Surface Organic Modification of TiO2 Powder and Relevant Character-ization. Adv. Mater. Sci. Eng., 2017, vol. 2017, pp. 1–8. DOI: 10.1155/2017/9562612
Primet M., Pichat P., Mathieu M.V. Infrared Study of the Surface of Titanium Dioxides. I. Hy-droxyl Groups. J. of Phys. Chem.,1971, vol. 9 (75), pp. 1216–1220. DOI: 10.1021/j100679a007
Lewis K.E., Parfitt G.D. Infra-Red Study of the Surface of Rutile. Trans. Farad. Soc., 1966, vol. 62, pp. 204–214. DOI: 10.1039/TF9666200204
Karkare M.M. Choice of Precursor not Affecting the Size of Anatase TiO2 Nanoparticles but Affecting Morphology Under Broader View. Int. Nano. Lett., 2014, vol. 4, pp. 1–8. DOI: 10.1007/s40089-014-0111-x
Hafizah N., Sopyan I. Nanosized TiO2 Photocatalyst Powder via Sol-Gel Method: Effect of Hy-drolysis Degree on Powder Properties. Int. J. Photoenergy., 2009, pp. 1–8. DOI: 10.1155/2009/962783
Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem., 2015, vol. 87, pp. 1051–1069. DOI: 10.1515/pac-2014-1117
Praveen P., Viruthagiri G., Mugundan S., Shanmugam N. Sol-Gel Synthesis and Characteriza-tion of Pure and Manganese Doped TiO2 Nanoparticles – A New NLO Active Material. Spectrochim. Acta A., 2014, vol. 120, pp. 548–557. DOI: 10.1016/j.saa.2013.12.006
Bagheri S., Shameli K., Hamid S.B.A. Synthesis and Characterization of Anatase Titanium Dioxide Nanoparticles Using Egg White Solution via Sol-Gel Method. J. Chem., 2012, vol. 2013, pp. 1–5. DOI: 10.1155/2013/848205
Araghi M.E.A., Shaban N., Bahar M. Synthesis and Characterization of Nanocrystalline Barium Strontium Titanate Powder by a Modified Sol-Gel Processing. Mater. Sci., 2016, vol. 34(1), pp. 63–68. DOI: 10.1515/msp-2016-0020
Devi R.S., Venckatesh R., Sivaraj R. Synthesis of Titanium Dioxide Nanoparticles by Sol-Gel Technique. IJIRSET., 2014, vol. 3(8), pp. 15206–15211. DOI: 10.15680/IJIRSET.2014.0308020
Kakihana M., Tada M., Shiro M. Structure and Stability of Water Soluble (NH4)8[Ti4(C6H4O7)4(O2)4]•8H2O. Inorg. Chem., 2001, vol. 5, pp. 891–894. DOI: 10.1021/ic001098l
Guy A., Jones P., Hill S.J. Identification and Chromatographic Separation of Antimony Species with α-Hydroxy Acids. Analyst., 1998, vol. 123, pp. 1513–1518. DOI: 10.1039/A708574E
Kakihana M., Tomita K., Petrykin V., Tada M., Sasaki S., Nakamura Y. Chelating of Titanium by Lactic Acid in the Water-Soluble Diammonium Tris(2-hydroxypropionato)titanate(IV). Inorg. Chem., 2004, vol. 43, pp. 4546–4548. DOI: 10.1021/ic040031l
Tomita K., Petrykin V., Kobayashi M., Shiro M., Yoshimura M., Kakihana M. A Water-Soluble Titanium Complex for the Selective Synthesis of Nanocrystalline Brookite, Rutile, and Anatase by a Hydrothermal Method. Angew. Chem. Int. Ed. Engl., 2006, vol. 45, pp. 2378–2381. DOI: 10.1002/anie.200503565
Tomita K., Kobayashi M., Petrykin V., Yin S., Sato T., Yoshimura M., Kakihana M. Hydro-thermal Synthesis of TiO2 Nanoparticles Using Novel Water-Soluble Titanium Complexes. J. Mater. Sci., 2008, vol. 43, pp. 2217–2221. DOI: 10.1007/s10853-007-2113-9
Kobayashi M., Petrykin V., Kakihana M., Tomita K. Hydrothermal Synthesis and Photocatalytic Activity of Whisker‐Like Rutile‐Type Titanium Dioxide. J. Am. Ceram., 2009, vol. 92, pp. S21–S26. DOI: 10.1111/j.1551-2916.2008.02641.x
Chiang Y., Kresge A.J., Pruszynski P., Schepp N.P., Wirz J. The Enol of Mandelic Acid, Detec-tion, Acidity in Aqueous Solution, and Estimation of the Keto-Enol Equilibrium Constant and Carbon Acidity of Mandelic Acid. Angew. Chem. Int. Ed. Engl., 1990, vol. 29, pp. 792–794. DOI: 10.1002/anie.199007921
Ссылки
- На текущий момент ссылки отсутствуют.