Исследование структурных характеристик Ni-Zn-Co феррошпинелей

Дарья Петровна Шерстюк, Владимир Евгеньевич Живулин, Андрей Юрьевич Стариков, Иброхими Ашурали Солизода, Ксения Петровна Павлова, Александр Юрьевич Пунда, Дмитрий Анатольевич Жеребцов, Денис Александрович Винник

Аннотация


В настоящее время в современной научной литературе наблюдается повышенный интерес к ферритам всех типов. Среди них особое место занимает Ni-Zn феррит со структурой шпинели. Известно, что функциональные свойства ферритов могут быть значительно изменены путем частичного или полного замещения катионов исходной матрицы на другие катионы, отличающиеся магнитным моментом и размером. Такое изменение структуры позволяет эффективно варьировать свойства ферритов, т. е. обеспечивать «настройку» материала под требуемые свойства. Анализ литературы в этом направлении показал, что эффективным замещающим катионом является ион кобальта Co2+. В настоящей работе речь идет о Ni-Zn ферритах переменного состава, с фиксируемым содержанием x(Co) = 0,1. Общая формула имеет вид: Co0,1Zn0,9–xNixFe2O4, (где x принимает значения 0; 0,3; 0,6; 0,9). Цель представленной работы заключается в синтезе образцов, а также в исследовании их плотности и пористости, которые, в свою очередь, оказывают прямое влияние на эксплуатационные свойства керамических ферритов. Синтез образцов производили методом твердофазной реакции при помощи высокотемпературной печи в атмосфере воздуха. Ранее проведенные исследования позволили выявить комплекс оптимальных физико-химических условий, при которых происходит ферритизация исходной шихты. Исходными компонентами для приготовления шихты служили оксиды. В качестве методов исследования в работе применяли рентгенофазовый и рентгеноструктурный анализ, электронную микроскопию и энергодисперсионную рентгеновскую спектроскопию. В результате рентгенофазового анализа было выявлено, что полученные образцы являются монофазными и относятся к шпинелям типа AFe2O4 (где элемент A = Ni, Zn, Co). Исследование морфологии поверхности образцов выявило наличие множества кристаллитов различного размера, естественная огранка которых соответствует кристаллитам, имеющим кубическую сингонию. Проведены исследования истинной и рентгеновской плотности полученных образцов. Определена зависимость влияния величины замещения x(Ni) на пористость (плотность), а также на параметры элементарной кристаллической решетки.

Ключевые слова


современные функциональные материалы; керамика; ферриты; замещенные ферриты; шпинельные ферриты; структура; твердофазный синтез

Полный текст:

PDF

Литература


Исследование особенностей состава, магнитной и кристаллической структуры гексафер-рита бария BaFe12–xTixO19 / В.В. Коровушкин, А.В. Труханов, В.Г. Костишин и др. // Физика твер-дого тела. – 2020. – Т. 62, № 5. – С. 789–798. DOI: 10.21883/FTT.2020.05.49250.622

Abu-Elsaad, N.I. Synthesis, Structural Characterization, and Magnetic Properties of Ni–Zn Nanoferrites Substituted with Different Metal Ions (Mn2+, Co2+, and Cu2+) / N.I. Abu-Elsaad, A.S. Nawara, S.A Mazen // J. Phys. Chem. Solids. – 2020. – V. 146. DOI: 10.1016/j.jpcs.2020.109620

Structural and Magnetic Studies of Nanocrystalline Ni-Zn Ferrites Synthesized by Sol-Gel Method / Y.P. Desai, S. Jamwal, S. Modiyil et al. // AIP Conf. Proc. – 2020. DOI: 10.1063/5.0016757

Exchange-Coupling Effect in Hard/Soft SrTb0.01Tm0.01Fe11.98O19/AFe2O4 (Where A = Co, Ni, Zn, Cu and Mn) Composites / N.A. Algarou, Y. Slimani, M.A. Almessiere et al. // Ceram. Int. – 2019. – Vol. 46, № 6. – P. 7089–98. DOI:10.1016/j.ceramint.2019.11.201

Synthesis, Microstruture and Electromagnetic Performance of NixZn1–xFe2O4 Ferrites with Dif-ferent Ni/Zn Ratios Prepared by a Novel Molten Salt Method / P. Yang, H. Qi, Z. Peng et al. // IOP Conf. Ser.: Mater. Sci. Eng. – 2019. DOI: 10.1088/1757-899X/678/1/012141

Influence of Chromium Substitution on Structural, Electrical, and Magnetic Properties of Ni-Zn-Cu Ferrites / G. Satyanarayana, G.N. Rao, K.V. Babu et al. // Acta Phys. Pol., A – 2020. – Vol. 138, № 3. – P. 355–63. DOI: 10.12693/APhysPolA.138.355

Investigations of Co Substitution on the Structural and Magnetic Properties of Ni-Zn Spinel Ferrite / J. Hu, Y. Ma, X. Kan et al. // J. Magn. Magn. Mater. – 2020. – V. 513. DOI:10.1016/j.jmmm.2020.167200

Structural and Magnetic Investigation of Al3+ and Cr3+ substituted Ni–Co–Cu Nanoferrites for Potential Applications / R. Jasrotia, S. Kour, P. Puri et al. // Solid State Sci. – 2020. – V. 110. DOI: 10.1016/j.solidstatesciences.2020.106445

Structural, electric and dielectric properties of Ni0.5Zn0.5FeCoO4 ferrite prepared by sol-gel Author links open overlay panel / A. Omri, E. Dhahri, B.F.O. Costa et al. // J. Magn. Magn. Mater. – 2020. – V. 499. – 166243. DOI: 10.1016/j.jmmm.2019.166243

Microstructure and Magnetic Properties of Ni-Mg-Zn-Co Ferrites / S.B. Patil, A.J. Davari, D.R. Patil et al. // Macromol. Symp. – 2020. – V. 393, № 1. – 2000179. DOI: 10.1002/masy.202000179

Estimation of Structural, Electrical, and Magnetic Variations of Mn-Ni- Zn Ferrites by Substi-tuting Rare Earth Y3+ for High-Frequency Applications / K.H. Maria, U.S. Akther, I.N. Esha et al. // J. Supercond. Novel Magn. – 2020. – Vol. 33, № 7. – 2133–2142. DOI: 10.1007/s10948-020-05471-9

Study the Physical, Electrical and Dielectric Properties of Calcium Doped Ni-Zn Ferrites / M.A.A. Nooman, M.N.I. Khan, S.D. Hossain et al. // Mod. Phys. Lett. B. – 2019. – Vol. 33, № 12. – 1950145. DOI: 10.1142/S0217984919501458

Spectroscopic Analysis and Temperature-Dependent Dielectric Properties of Bulk Ni-Zn Ce-ramics / A. Yadav, P. Choudhary, P. Saxena et al. // J. Adv. Dielectr. – 2019. – V. 9, № 2. – 1950014. DOI: 10.1142/S2010135X19500140

Agami, W.R. Effect of Neodymium Substitution on the Electric and Dielectric Properties of Mn-Ni-Zn Ferrite / W.R. Agami // Phys. B: Condensed Matter. – 2018. – Vol. 534. – P. 17–21. DOI: 10.1016/j.physb.2018.01.021

Understanding the Impacts of Al+3-Substitutions on the Enhancement of Magnetic, Dielectric and Electrical Behaviors of Ceramic Processed Nickel-Zinc Mixed Ferrites: FTIR assisted studies / T.K. Bromho, K. Ibrahim, H. Kabir // Mater. Res. Bull. – 2018. – V. 97. – P. 444–451. DOI: 10.1016/j.materresbull.2017.09.013

Синтез и структура керамики бизамещенного гексаферрита M-типа BaFe(11,5–x)Ti0,5AlxO19 / И.A. Солизода, В.Е. Живулин, Д.П. Шерстюк и др. // Вестник ЮУрГУ. Серия «Химия». – 2020. – Т. 12, № 4. – С. 110–119. DOI: 10.14529/chem200408

Correlation Between Structural, Magnetic and Dielectric Properties of Microwave Sintered Ni-Zn-Al Nanoferrites / C.S. Ega, B.R. Babu, K.V. Ramesh et al. // J. Supercond. Novel Magn. – 2019. – Vol. 32, № 11. – P. 3525–34. DOI: 10.1007/s10948-019-5097-1

The Influence of Nd Substitution in Ni–Zn Ferrites for the Improved Microwave Absorption Properties / K. Qian, Z. Yao, H. Lin et al. // Ceram. Int. – 2020. – Vol. 46, № 1. – P. 227–35. DOI: 10.1016/j.ceramint.2019.08.255

Studies of Magnetic, Mössbauer Spectroscopy, Microwave Absorption and Hyperthermia Behavior of Ni-Zn-Co-Ferrite Nanoparticles Encapsulated in Multi-Walled Carbon Nanotubes / M. Dalal, A. Das, D. Das et al. // J. Magn. Magn. Mater. – 2018. – V. 460. – P. 12–27. DOI: 10.1016/j.jmmm.2018.03.048

X-band Shielding Properties of Mg-9Li matrix Composite Containing Ni0.4Zn0.4Co0.2Fe2O4 Fab-ricated by Multi-Layer Composite Rolling / J. Wang, Y. Li, R. Wu et al. // J. Alloys Compd. – 2020. – Vol. 843. – 156053. DOI: 10.1016/j.jallcom.2020.156053

Mattei, J.-L. Magnetic and Dielectric Properties in the UHF Frequency Band of Half-Dense Ni-Zn-Co Ferrites Ceramics with Fe-excess and Fe-deficiency / J.-L. Mattei, D. Souriou, A. Chevalier // J. Magn. Magn. Mater. – 2018. – Vol. 447. – P. 9–14. DOI: 10.1016/j.jmmm.2017.09.030

Изучение влияния замещения кобальтом на структуру никель-цинкового феррита / Д.П. Шерстюк, А.Ю. Стариков, В.Е. Живулин и др. // Вестник ЮУрГУ. Серия «Металлургия». – 2020. – Т. 20, № 2. – С. 51–56. DOI: 10.14529/met200205

Синтез, структура и свойства Zn0,3Ni0,7–xCoxFe2O4 (x = 0–0,6) феррита / Д.П. Шерстюк, А.Ю. Стариков, В.Е. Живулин и др. // Вестник ЮУрГУ. Серия «Химия». – 2020. – Т. 12, № 4. – С. 92–100. DOI:10.14529/chem200406

Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides / R.D. Shannon // Scta Cryst. – 1976. – P. 751–767

Van Horn, J.D. Electronic Table of Shannon Ionic Radii / J.D. Van Horn // Electronic Table. – 2001.


Ссылки

  • На текущий момент ссылки отсутствуют.