Атомная дипольная поляризация в прогнозах химических сдвигов амидных и пирролидиновых протонов
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Казицина Л.А. Применение УФ-, ИК-, ЯМР-спектроскопии в органической химии, Книга по требованию. Москва, 2012, 262 с. [Kazicina L.A. Primenenie UF-, IK-, JaMR-spektroskopii v organicheskoy khimii [Application of UV, IR, and NMR Spectroscopy in Organic Chemistry, Book on Demand]. Print on Demand, Moscow, 2012, 262 p.]
Balandina А., Mamedov V., Franck Х., Figadere B., Latypov Sh. Application of Quantum Chemical Calculations of 13С NМR Chemical Shifts to Quinoxaline Structure Determination, Tetr. Lett, 2004, vol. 45, no. 21, pp. 4003–4007. DOI: 10.1016/j.tetlet.2004.03.182
Gui-Juan Cheng, Xinhao Zhang, Lung Wa Chung, Liping Xu, Yun-Dong Wu. Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions, J. Am. Chem. Soc., 2015, vol. 137, pp. 1706−1725. DOI: 10.1021/ja5112749
Fedorova O.V., Titova, Y.A., Ovchinnikova I.G., Rusinov G.L., Charushin V.N. 4-Hydroxyproline Containing Podands as New Chiral Catalysts for the Asymmetric Biginelli Reaction, Mendeleev Communications, 2018, vol. 28, no. 4, pp. 357–358. DOI: 10.3390/proceedings2010012
Borodina O.S., Makarov, G.I., Bartashevich E.V., Ovchinnikova I.G., Titova Y.A., Fedorova O.V., Rusinov G.L., Charushin V.N. Theoretical Conformational Studies of Podands Containing (2 S, 4 R)-4-Hydroxyproline Moieties, Chem. Heterocyc. Compd, 2019, vol. 55, no. 8, pp. 755–761. DOI: 10.1007/s10593-019-02531-4
Zhuo Tang, Zhi-Hua Yang, Xiao-Hua Chen, Lin-Feng Cun, Ai-Qiao Mi, Yao-Zhong Jiang, Liu-Zhu Gong. A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones with Aldedydes, J. Am. Chem. Soc., 2005, vol. 127, pp. 9285–9289. DOI: 10.1021/ja0510156
Tupikina E.Y., Denisov G.S., Tolstoy P.M. NMR Study of CHN Hydrogen Bond and Proton Transfer in 1,1-Dinitroethane Complex with 2, 4, 6-Trimethylpyridine, J. Phys. Chem. A, 2015, vol. 119, no. 4, pp. 659–668. DOI: 10.1021/jp511493m
Kiryanov I.I. et al. Prediction of 13C NMR Chemical Shifts by Artificial Neural Network, I, Partial Charge Model as Atomic Descriptor, Chemom. Intell. Lab. Syst., 2016, vol. 152, pp. 62–68. DOI: 10.1016/j.chemolab.2016.01.010
Bhatta R.S. et al. A Brief Review of Badger–Bauer Rule and Its Validation from a First-principles Approach, Modern Physics Letters B, 2014, vol. 28, no. 29, p. 1430014. DOI: 10.1142/S0217984914300142
Babaev E.V., Torocheshnikov V.N., Bobrovskii S.I. NMR Spectra of Indolizines and Their σ Complexes, Chem. Heterocycl. Compd., 1995, vol. 31, no. 9, pp. 1079–1087. DOI: 10.1007/BF01165054
Manz T.A. Seven Confluence Principles: a Case Study of Standardized Statistical Analysis for 26 Methods that Assign Net Atomic Charges in Molecules, RSC Advances, 2020, vol. 10, no. 72, pp. 44121–44148. DOI: 10.1039/D0RA06392D
Денисов Г.С., Бурейко С.Ф., Кучеров С.Ю., Толстой П.М. Корреляционные соотношения между энергией и спектроскопическими параметрами комплексов с водородной связью F••• HF, Доклады Академии наук, 2017, Т. 475, № 1, С. 49–52. [Denisov G.S., Burejko S.F., Kucherov S.J., Tolstoj P.M. [Correlation Relationshipsbetween the Energy and Spectroscopic Parameters of Complexes with a Hydrogen Bond F••• HF]. Dokl. Phys. Chem., 2017, vol. 475, no. 1, pp. 115–118.]
Розенцвет В.А., Саблина Н.А., Ульянова Д.М., Толстой П.М., Смирнов С.Н., Новаков И.А. Идентификация строения терминальных звеньев полибутадиена методом ЯМР-спектроскопии с использованием Т2-фильтра, Доклады Академии наук, 2020, Т. 491, С. 55–58, [Rozencvet V.A., Sablina N.A., Ul'janova D.M., Tolstoj P.M., Smirnov S.N., Novakov I.A. [Identification of the Structure of Polybutadiene Terminal Units by NMR Spectroscopy with T2-Filter]. Dokl. Phys. Chem., 2020, vol. 491, pp. 40–42]. DOI: 10.1134/S0012501620040028]
Эмсли Д., Финей Д., Сатклиф Л., Спектроскопия ЯМР высокого разрешения. Мир, Москва, 1982, 321 c. [Jemsli D., Finej D., Satklif L., Spektroskopija YaMR vysokogo razresheniya [High-resolution NMR spectroscopy]. Mir, Moscow, 1982, 321 p.]
Howard B., Linder B., Merle T. Effect of Dispersion Interaction on Nuclear Magnetic Resonance Shifts, J. Chem. Phys., 1962, vol. 36, p. 485. DOI: 10.1063/1.1732537
Жохов А.К., Фоменко П.В., Апаркин А.М., Белоусов Е.Б. Связь газохроматографических индексов удерживания и химических сдвигов 13C структурных изомеров соединений четырехкоординированного фосфора, Журнал физической химии, 2015, т. 89, № 1, с. 116–120. [Zhohov A.K., Fomenko P.V., Aparkin A.M., Belousov E.B. Relationship between Gas Chromatographic Retention Indices and Chemical Shifts in the 13C NMR Spectra of Structural Isomers of Compounds of Tetracoordinated Phosphorus. Russ, J. Phys. Chem., 2015, vol. 89, no. 1, pp. 125–128.] DOI: 10.1134/S0036024415010331]
Bader R.F.W. Atoms in Molecules: A Quantum Theory, Oxford University Press, New York, 1990, 458 p.
Bader R.F.W., Keith T.A. Properties of Atoms in Molecules: Magnetic Susceptibilities. J. Chem. Phys., 1993, vol. 99, p. 3683. DOI: 10.1063/1.466166
Bartashevich E.V., Tsirelson V.G. Atomic Dipole Polarization in Charge-transfer Complexes with Halogen Bonding, Phys. Chem. Chem. Phys., 2013, vol. 15, no. 7, pp. 2530–2538. DOI: 10.1039/c2cp43416d
Muller A. Explicit Approximate Relation between Reduced Two- and One-particle Density Matrices, Phys. Lett. A, 1984, vol. 105, no. 9, pp, 446–452. DOI: 10.1016/0375-9601(84)91034-X
McWeeny R. Some Recent Advances in Density Matrix Theory, Rev. Mod. Phys., 1960, vol. 32, no. 2, p. 335. DOI: 10.1103/RevModPhys.32.335
Matta C.F., Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential. J. Comput. Chem., 2014, vol. 35, no. 16, 1165–1198. DOI: 10.1002/jcc.23608
Bader R.F.W., Stephens M.E., Spatial Localization of the Electronic Pair and Number Distributions in Molecules. J. Am. Chem. Soc., 1975, vol. 97, no. 26, pp. 7391–7399. DOI: 10.1021/ja00859a001
Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. The Cambridge Structural Database, Acta Cryst., 2016, vol. B72, pp. 171–179. DOI: 10.1107/S2052520616003954
Granovsky A.A., Firefly version 8, www http://classic.chem.msu.su/gran/firefly/index.html
Mulliken R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions, I, J. Phys. Chem., 1955, vol. 23, no. 10, pp. 1833–1840. DOI: 10.1063/1.1741877
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A.Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J., Gaussian 09, Revision A.03, Gaussian, Inc.: Wallingford, 2016.
Keith T.A., (2013) AIMALL, Version 13.10.19. Professional. http://aim.tkgristmill.com
Lu T., Chen F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem., 2012, vol. 33, pp. 580–592. DOI: 10.1002/jcc.22885
Wei-Yan Qin, Bo Liu, Jing Ma, Hui-Juan Wang. (S)-5-Oxo-N-phenylpyrrolidine-2-carboxamide, Acta Crystallogr. Sect. E: Struct. Rep. Online, 2011, vol. 67, pp. 2763. DOI: 10.1107/S160053681103786X
Moorthy J.N., Saha S. Highly Diastereo‐and Enantioselective Aldol Reactions in Common Organic Solvents Using N‐Arylprolinamides as Organocatalysts with Enhanced Acidity, Eur. J. Org. Chem., 2009, vol. 739. DOI: 10.1002/ejoc.200800960
Edmondson S.D., Zhu C., Kar N.F., Salvo J.D., Nagabukuro H., Sacre-Salem B., Dingley K., Berger R., Goble S.D., Morriello G., Harper B., Moyes C.R., Shen D.-M., Wang L., Ball R., Fitzmaurice A., Frenkl T., Gichuru L.N., Ha S., Hurley A.L., Jochnowitz N., Levorse D., Mistry S., Miller R.R., Ormes J., Salituro G.M., Sanfiz A., Stevenson A.S., Villa K., Zamlynny B., Green S., Struthers M., Weber A.E., Where Do Recent Small Molecule Clinical Development Candidates Come from? J. Med. Chem., 2016, vol. 59, p. 609. DOI: 10.1021/acs.jmedchem.5b01372
Basavaiah D., Rao K.V., Reddy B.S. Chiral Diamides as Efficient Catalytic Precursors for the Borane-mediated Asymmetric Reduction of Prochiral Ketones, Tetrahedron: Asymm., 2007, vol. 18, p. 968. DOI: 10.1016/j.tetasy.2007.03.034
Rheingold A.L. CCDC 1905099: Experimental Crystal Structure Determination, 2019. DOI: 10.5517/ccdc.csd.cc21ydt7
Maleev V.I., Gugkaeva Z.T., Moskalenko M.A., Tsaloev A.T., Lyssenko K.A. New (S)-Proline Derivatives as Catalysts for the Enantioselective Aldol Reaction, Russ. Chem. Bull., 2009, vol. 58, no. 9, pp. 1903–1907. DOI: 10.1007/s11172-009-0259-0
Nayab S., Lee H-I., Jeong J.H. (2R)-N-(2-Benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide, Acta Crystallogr. Sect. E: Struct. Rep. Online, 2011, vol. 67, no. 9, p. 2478. DOI: 10,1107/S1600536811033836
Darehkordi A., Ramezani M. One-pot Synthesis of Novel (2R,4S)-N-aryl-4-hydroxy-1-(2,2,2-trifluoroacetyl) Pyrrolidine-2-carboxamides via TiO2-NPs and Pd(PPh3)2Cl2 Catalysts and Investigation of Their Biological Activities, Mol. Diversity, 2017, vol. 21, p. 305. DOI: 10,1007/s11030-017-9726-y
Moorthy J.N., Saha S., Highly Diastereo‐and Enantioselective Aldol Reactions in Common Organic Solvents Using N‐Arylprolinamides as Organocatalysts with Enhanced Acidity, Eur. J. Org. Chem., 2009, vol. 2009, p. 739. DOI: 10.1002/ejoc.200800960
Vijayadas K.N., Davis H.C., Kotmale A.S., Gawade R.L., Puranik V.G., Rajamohanan P.R., Sanjayan G.J. An Unusual Conformational Similarity of Two Peptide Folds Featuring Sulfonamide and Carboxamide on the Backbone, Chem. Commun, 2012, vol. 48, p. 9747. DOI: 10.1039/c2cc34533a
Fu Y.-Q., Li Z.-C., Ding L.-N., Tao J.-C., Zhang S.-H., Tang M.-S. Direct Asymmetric Aldol Reaction Catalyzed by Simple Prolinamide Phenols, Tetrahedron: Asymm., 2006, vol. 17, p. 3351. DOI: 10.1016/j.tetasy.2006.12.008
Wang C., Jiang Y., Zhang X., Huang Y., Li B., Zhang G. Rationally Designed OrganoCatalyst for Direct Asymmetric Aldol Reaction in the Presence of Water, Tetrahedron Lett., 2007, vol. 48, p. 4281. DOI: 10.1016/j.tetlet.2007.04.037
Hong Y. CCDC 1401368: Experimental Crystal Structure Determination, 2015. DOI: 10.5517/cc1j17f7
Priya G., Kotmale A.S., Chakravarty D., Puranik V.G., Rajamohanan P.R., Sanjayan G.J., Conformational Modulation of Peptides Using β-Aminobenzenesulfonic Acid (S Ant), Org. Biomol. Chem., 2015, vol. 13, p. 2087. DOI: 10.1039/C4OB02421D
Ссылки
- На текущий момент ссылки отсутствуют.