Влияние замещения железа алюминием и титаном в гексаферрите бария BaFe(12–2x)TixAlxO19 на структуру и свойства
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Rianna M., Sembiring T., Kurniawan C., Setiadi E.A., Simbolon S., Ginting M., Sebayang P. Mi-crostructure and Magnetic Properties of BaFe12–2xMgxAlxO19 for Microwave Absorbing Materials. Int. J. Appl. Eng. Res., 2017, vol. 12, no. 17, pp. 6586–6590.
Wang S., Ding J., Shi Y., Chen, Y.J. High Coercivity in Mechanically Alloyed BaFe10Al2O19.
J. Magn. Magn. Mater., 2000, vol. 219, pp. 206–212. DOI: 10.1016/S0304-8853(00)00450-9.
Haneda K., Kojima H. Magnetization Reversal Process in Chemically Precipitated and Ordinary Prepared BaFe12O19. J. Appl. Phys., 1973, vol. 44, no. 8, pp. 3760–3762. DOI: 10.1063/1.1662836.
Li Y., Wang Q., Yang H. Synthesis, Characterization and Magnetic Properties on Nanocrystalline BaFe12O19 Ferrite. Current Applied Physics., 2009, vol. 9(6), pp. 1375–1380. DOI: 10.1016/j.cap.2009.03.002.
Vinnik D.A., Zherebtsov D.A., Mashkovtseva L.S., Nemrava S., Yakushechkina A.K., Semisalova A.S., Gudkova S.A., Anikeev A.N., Perov N.S., Isaenko L.I., Niewa R. Tungsten Substitut-ed BaFe12O19 Single Crystal Growth and Characterization. Mater. Chem. Phys., 2015, vol. 155, pp. 99–103. DOI: 10.1016/j.matchemphys.2015.02.005.
Gunanto Y.E., Izaak M.P., Sitompul H., Adi W.A. Reflection Loss Characteristic as Coating Thickness Function on the Microwave Absorbing Paint at a Frequency of 8–12 GHz. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 515, pp. 012074. DOI: 10.1088/1757-899x/515/1/012074.
Ghasemi A., Morisako A. Static and High Frequency Magnetic Properties of Mn–Co–Zr Substi-tuted Ba-ferrite. J. Alloys Compd., 2008, vol. 456 (1–2), pp. 485–491. DOI: 10.1016/j.jallcom.2007.02.101.
Vinnik D.A., Zherebtsov D.A., Lubov S., Mashkovtseva L.S., Nemrava S., Perov N.S., Semisalova A.S., Krivtsov I.V., Isaenko L.I., Mikhailov G.G., Niewa R. Ti-Substituted BaFe12O19 Single Crystal Growth and Characterization. Cryst. Growth Des., 2014, vol. 14, no. 11, pp. 5834–5839. DOI: 10.1021/cg501075c.
Shaayan A., Abdellahi M., Shahmohammadian F., Jabbarzare S., Khandan A., Ghayour H.
Mechanochemically Aided Sintering Process for the Synthesis of Barium Ferrite: Effect of Aluminum Substitution on Microstructure, Magnetic Properties and Microwave Absorption. J. Alloys Compd., 2017, vol. 708, pp. 538–546. DOI: 10.1016/j.jallcom.2017.02.305.
Harris V.G., Geiler A., Chen Y., Yoon S.D., Wu M., Yang A., Chen Z., He P., Parimi P.V., Zuo X., Patton C.E., Abe M., Acher O., Vittoria C. Recent Advances in Processing and Applications of Microwave Ferrites. J. Magn. Magn. Mater., 2009, vol. 321 (14), pp. 2035–2047. DOI: 10.1016/j.jmmm.2009.01.004.
Belrhazi H., El Hafidi M.Y., El Hafidi M. Permanent Magnets Elaboration from BaFe12O19 Hexaferrite Material: Simulation and Prototype. Res. Dev. Material Sci., 2019, vol. 11, iss. 2, pp. 1143–1147. DOI: 10.31031/RDMS.2019.11.000757.
Valenzuela R. Novel Applications of Ferrites. Phys. Res. Int., 2012, vol. 2012, 591839. DOI: 10.1155/2012/591839.
González-Angeles A., Mendoza-Suarez G., Grusková A., Papánová M., Slama, J. Magnetic Studies of Zn–Ti-substituted Barium Hexaferrites Prepared by Mechanical Milling. Mater. Lett., 2005, vol. 59(1), pp. 26–31. DOI: 10.1016/j.matlet.2004.09.012.
Hong Y.S., Ho C.M., Hsu H.Y., Liu C.T. Synthesis of Nanocrystalline Ba(MnTi)xFe12−2xO19 Powders by the Sol–Gel Combustion Method in Citrate Acid–Metal Nitrates System (x=0, 0.5, 1.0, 1.5, 2.0). J. Magn. Magn. Mater., 2004, vol. 279(2–3), pp. 401–410. DOI: 10.1016/j.jmmm.2004.02.008.
Yue Z., Zhong M., Ma H., Guo G. Effect of Al-substitution on Phase Formation and Magnetic Properties of Barium Hexaferrite Synthesized with Sol-Gel Auto-combustion Method. J. Shanghai Univ. (Engl. Ed.), 2008, vol. 12, no. 3, pp. 216–220. DOI: 10.1007/s11741-008-0306-1.
Alange R.C., Khirade P.P., Birajdar S.D., Humbe A.V., Jadhav K.M.. Structural, Magnetic and Dielectrical Properties of Al–Cr Co-substituted M-Type Barium Hexaferrite Nanoparticles. J. Mol. Struct., 2016, vol. 1106, pp. 460–467. DOI: 10.1016/j.molstruc.2015.11.004.
Phan T.L., Tran N., Nguyen H.H., Yang D.S., Dang N.T., Lee B.W. Crystalline and Electronic Structures and Magnetic Properties of BaCo1-xMnxFe11O19 Hexaferrites. J. Alloys Compd., 2019, vol. 816, pp. 152528. DOI: 10.1016/j.jallcom.2019.152528.
Li Z.W., Ong C.K., Yang Z., Wei F.L., Zhou X.Z., Zhao J.H., Morrish A.H. Site Preference and Magnetic Properties for a Perpendicular Recording Material: BaFe12-xZnx/2Zrx/2O19 Nanoparticles. Phys. Rev. B., 2000, vol. 62, no. 10, pp. 6530–6537. DOI: 10.1103/PhysRevB.62.6530.
Liu Y., Drew M.G.B., Liu Y., Wang J., Zhang M. Preparation, Characterization and Magnetic Properties of the Doped Barium Hexaferrites BaFe12−2xCox/2Znx/2SnxO19, x = 0.0–2.0. J. Magn. Magn. Mater., 2010, vol. 322, no. 7, pp. 814–818. DOI: 10.1016/j.jmmm.2009.11.009.
Rianna M., Situmorang M., Kurniawan C., Tetuko A.P., Setiadi E.A., Ginting M., Sebayang P. The Effect of Mg-Al Additive Composition on Microstructure, Magnetic Properties, and Microwave Absorption on BaFe12–2xMgxAlxO19 (x = 0–0.5) Material Synthesized from Natural Iron Sand. Mater. Lett., 2019, vol. 256, pp. 126612. DOI: 10.1016/j.matlet.2019.126612.
Radwan M., Rashad M.M., Hessien M.M. Synthesis and Characterization of Barium Hexaferrite Nanoparticles. J. Mater. Process. Technol., 2007, vol. 181, no. 1–3, pp. 106–109. DOI: 10.1016/j.jmatprotec.2006.03.015.
Mallick K.K., Shepherd P., Green R.J. Dielectric Properties of M-type Barium Hexaferrite Pre-pared by Co-precipitation. J. Eur. Ceram. Soc., 2007, vol. 27, no. 4, pp. 2045–2052. DOI: 10.1016/j.jeurceramsoc.2006.05.098.
Trukhanov A., Panina L., Trukhanov S., Turchenko V., Salem M. Evolution of Structure and Physical Properties in Al-substituted Ba-hexaferrites. Chin. Phys. B, 2016, vol. 25, no. 1, pp. 016102. DOI: 10.1088/1674-1056/25/1/016102.
Manawan M., Manaf A., Soegijono B., Yudi A. Microstructural and Magnetic Properties of Ti2+-Mn4+ Substituted Barium Hexaferrite. Adv. Mater. Res., 2014, vol. 896, pp. 401–405. DOI: 10.4028/www.scientific.net/AMR.896.401.
Zhivulin V.E., Solizoda I.A., VinnikD.A., Gudkova S.A., Trofimov E.A., Starikov A.Yu., Zaitseva O.V., Sherstyuk D.P., Vasiljeva A.E., Zherebtsov D.A., Taskaev S.V., Zezyulina P.A., Petrov D.A., Trukhanov A.V. Impact of Al3+ Ions on Magnetic and Microwave Properties of BaM:Ti Hexaferrites. J. Mater. Res. Technol., 2021, vol. 11, pp. 2235–2245. DOI: 10.1016/j.jmrt.2021.02.051.
Lisjak D. The Low-temperature Sintering of M-type Hexaferrite. J. Eur. Ceram. Soc., 2012, vol. 32, pp. 3351–3360. DOI: 10.1016/j.jeurceramsoc.2012.04.003.
Li K., Gu H., Wei Q. A Novel Hydrothermal Synthesis Method for Barium Ferrite. China Particuol., 2004, vol. 2, is. 1, vol. 41–43. DOI: 10.1016/S1672-2515(07)60019-0.
Yamauchi T., Tsukahara Y., Sakata T., Mori H., Chikata T., Katoh S., Wada, Y. Barium Ferrite Powders Prepared by Microwave-Induced Hydrothermal Reaction and Magnetic Property. J. Magn. Magn. Mater., 2009, vol. 321, is. 1, pp. 8–11. DOI: 10.1016/j.jmmm.2008.07.005.
Obradors X., Collomb A., Pernet M., Samaras D., Joubert J. C. X-Ray Analysis of the Structural and Dynamic Properties of BaFe12O19 Hexagonal Ferrite at Room Temperature. J. Solid State Chem., 1985, vol. 56, pp. 171–181. DOI: 10.1016/0022-4596(85)90054-4.
Shannon, R.D., Prewitt, C. T. Effective Ionic Radii in Oxides and Fluorides. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, vol. A32, pp. 925-946. DOI: 10.1107/s0567740869003220.
Ссылки
- На текущий момент ссылки отсутствуют.