Синтез и строение гексахлорцирконата (4 фтор-бензил)трифенилфосфония [Ph3PCH2C6H4F-4][ZrCl6]

Владимир Викторович Шарутин, Ольга Константиновна Шарутина, Анастасия Владимировна Рыбакова, Олег Станиславович Ельцов

Аннотация


Гексахлорцирконат (4-фторбензил)трифенилфосфония [Ph3PCH2C6H4F 4][ZrCl6] (1) был синтезирован реакцией (4 фторбензил)трифенилфосфонийхлорида с четыреххлористым цирконием в растворе ацетонитрила. Структура соединения была охарактеризована методами ИК, 1Н, 13С{1Н} и 19F{1Н} ЯМР-спектроскопии, элементного анализа и монокристаллической рентгеновской дифракции. По данным рентгенографии, кристаллы комплексов 1 состоят из двух типов тетраэдрических (4 фторбензил)трифенилфосфониевых катионов (СРС 99,44(13)114,94(12), PC 1,706(2)1,935(3) Å) и октаэдрические анионы [ZrCl6]2– (транс-углы ClZrCl равны 177,35(3)178,62(3), расстояния ZrCl составляют 2,4308(9)2,5350(11) Å). Структура комплекса 1 формируется за счет слабых водородных связей между катионами и анионами. В ИК-спектре комплекса 1 присутствуют интенсивная полоса валентных колебаний связи FCAr при 997 см−1, полоса колебаний связей P−СAr при 1439 см−1 и полосы деформационных и валентных колебаний CH при 743 и 3059, 2912 см−1. В спектре ЯМР 31Р комплекса 1 характеристичным сигналом является дублет за счет дальнего взаимодействия на атоме фтора (J = 8,8 Гц). Все сигналы углеродных атомов в спектре ЯМР 13С за счет прямых и дальних взаимодействий с атомами фтора и фос-фора наблюдаются в виде дублетов и дублетов-дублетов.

Ключевые слова


тетрахлорид циркония; хлорид (4 фторбензил)трифенилфосфония; гексахлорцирконат (4 фторбензил)трифенилфосфония; реакция присоединения

Полный текст:

PDF

Литература


Джемилев, У.М. Комплексы циркония в синтезе и катализе / У.М. Джемилев, О.С. Востри-кова, А.Г. Ибрагимов // Успехи химии. – 1986. – 55 (2). – С. 191–224.

Schwartz, I. Hydrozirconation: A New Transition Metal Reagent for Organic Synthesis / I. Schwartz, J. Labinger // Angew. Chem., Int. Ed. Engl. – 1976. – V. 15. – P. 333–340. DOI: 10.1002/anie.197603331.

Schwartz, J. Organozirconium compounds in organic synthesis: cleavage reactions of carbon-zirconium bonds / J. Schwartz // Pure Appl. Chem. – 1980. – Vol. 52(3). – P. 733–740. DOI: 10.1351/pac198052030733.

Rogers, J. S. Ethoxyboratabenzene Zirconium Complexes: Catalysts for α-Olefin Production / J. S. Rogers, G. C. Bazan, and C. K. Sperry // J. Am. Chem. Soc. – 1997. – Vol. 119(39). – P. 9305–9306. DOI: 10.1021/ja971976n.

Novel Zirconium Complexes with Constrained Cyclic β-Enaminoketonato Ligands: Improved Catalytic Capability Toward Ethylene Polymerization / K.-T. Wang, Y.-X. Wang, B. Wang et al. // Dalton Trans. – 2016. – Vol. 45. – P. 10308–10318. DOI: 10.1039/C6DT01391K.

Zirconium Enolatoimine Complexes in Olefin Polymerization / S.M. Yu, U. Tritschler, I. Göttker-Schnetmann, and S. Mecking // Dalton Trans. – 2010. – Vol. 39(19). – P. 4612–4618. DOI: 10.1039/B916289E.

Titanium and Zirconium Permethylpentalene Complexes, Pn*MCpRX, as Ethylene Polymeriza-tion Catalysts / D.A. X. Fraser, Z.R. Turner, J.-Ch. Buffet, and D. O’Hare // Organometallics. – 2016. – Vol. 35(16). – P. 2664–2674. DOI: 10.1021/acs.organomet.6b00417.

Highly Active and Isospecific Styrene Polymerization Catalyzed by Zirconium Complexes Bear-ing Aryl-substituted [OSSO]-Type Bis(phenolate) Ligands / N. Nakata, T. Toda, Y. Saito et al. // Poly-mers. – 2016. – Vol. 8(2). – P. 31–40. DOI: 10.3390/polym8020031.

Theaker, G.W. Zirconium-Catalyzed Polymerization of a Styrene: Catalyst Reactivation Mecha-nisms Using Alkenes and Dihydrogen / G.W. Theaker, C. Morton, and P. Scott // Macromolecules. – 2011. – Vol. 44(6). – P. 1393–1404. DOI: 10.1021/ma102835p.

Catalytically Active N-Acylamidine–Zirconium Complexes: Synthesis, Structures, and Applica-tion in Ethylene Polymerization / Th. Holtrichter-Rößmann, I. Häger, C.-G. Daniliuc, R. Fröhlich, K. Bergander, C. Troll, B. Rieger, René S. Rojas, and E.-Ul. Würthwein // Organometallics. – 2016. – Vol. 35(11). – P. 1906–1915. DOI: 10.1021/acs.organomet.6b00240.

Cuenca, T. Dicyclopentadienyl-titanium and -Zirconium Complexes as Catalysts for Hydrogena-tion of Olefins / T. Cuenca, J. C. Flores, and P. Royo // J. Organomet. Chem. – 1993. – Vol. 462(1-2). – P. 191–201. DOI: 10.1016/0022- 328X(93)83357-2.

Stoichiometric Reactions and Catalytic Hydrogenation with a Reactive Intramolecular Zr+/Amine Frustrated Lewis Pair / X. Xu, G. Kehr, C.G. Daniliuc, and G. Erker // J. Am. Chem. Soc. – 2015. – Vol. 137(13). – P. 4550–4557. DOI: 10.1021/jacs.5b01623.

Highly Enantioselective Friedel−Crafts Alkylations of Indoles with Simple Enones Catalyzed by Zirconium(IV)−BINOL Complexes† / G. Blay, I. Fernandez, J. R. Pedro, and C. Vila // Org. Lett. – 2007. – Vol. 9(13). – P. 2601–2604. DOI: 10.1021/ol0710820.

Enantioselective Zirconium-Catalyzed Friedel–Crafts Alkylation of Pyrrole with Trifluoromethyl Ketones / G. Blay, I. Fernandez, A. Monleon et al. // Org. Lett. – 2009. – Vol. 11(2). – P. 441–444. DOI: 10.1021/ol802509m.

Mo, L.-P. Recent Applications of Zirconium Compounds as Catalysts or Reagents in Organic Synthesis / L.-P. Mo and Zh.-H. Zhang // Curr. Org. Chem. – 2011. – Vol. 15(22). – P. 3800–3823. DOI: 10.2174/138527211797884520.

[Na-15-Krone-5]2[ZrF2Cl4] und (PPh4)2[ZrCl6] • 2 CH2Cl2; Synthesen, IR-Spektren und Kristallstrukturen / [Na-15-Crown-5]2[ZrF2Cl4] and (PPh4)2[ZrCl6] • 2 CH2Cl2; Syntheses, IR Spectra, and Crystal Structures / E. Hartmann, K. Dehnicke, D. Fenske et al. // Z. Naturforsch., B: Chem. Sci. – 1989. – Vol. 44(10). – P. 1155–1160. DOI: 10.1515/znb-1989-1001.

Chen, L. Synthesis, Structure, and Reactivity of [Zr6Cl18H5]2-, the First Paramagnetic Species of Its Class / L. Chen and F.A. Cotton // Inorg. Chem. – 1996. – Vol. 35(25). – P. 7364–7369. DOI: 10.1021/ic960454q.

Chen, L. Synthesis and Structural Characterization of Compounds Containing the [Zr6Cl18H5]3– Cluster Anion. Determination of the Number of Cluster Hydrogen Atoms / L. Chen, F. A. Cotton, and W.F. Wojtczak // Inorg. Chem. – 1997. – Vol. 36(18). – P. 4047–4054. DOI: 10.1021/ic960173i.

Synthesis and Structure of (Ph4P)2MCl6 (M = Ti, Zr, Hf, Th, U, Np, Pu) / S.G. Minasian, K.S. Boland, R.K. Feller, A.J. Gaunt, S.A. Kozimor, I. May, S.D. Reilly, B.L. Scott, and D.K. Shuh // Inorg. Chem. – 2012. – Vol. 51(10). – P. 5728–5736. DOI: 10.1021/ic300179d.

Gauch, F. Synthese und Kristallstrukturen der Mehrkernigen Rhenium–Nitrido-Komplexe [Re2N2Cl4(PMe2Ph)4(MeCN)] und [Re4N3Cl9(PMe2Ph)6] / F. Gauch and J. Strahle // Z. Anorg. Allg. Chem. – 2000. – Vol. 626, Iss. 5. – P. 1153–1158. DOI: 10.1002/(SICI)1521-3749(200005)626:5<1153::AID-ZAAC1153>3.0.CO;2-0.

Шарутин, В.В. Синтез и строение комплексов циркония [Ph3PR]2+[ZrCl6]2–, R = Et, CH2Ph, CH2C(O)OMe / В.В. Шарутин, О.К. Шарутина, Е.В. Лобанова // Журн. неорган. химии. – 2018. – Т. 63, № 12. – С. 1549–1554.

Синтез и строение гексахлорцирконатов три-фенилбут-2-енил- и трифенилметоксиметилфосфония / В.В. Шарутин, О.К. Шарутина, Н.М. Тарасова и др. // Изв. вузов. Химия и хим. технология. – 2019. – Т. 62, вып. 6. – С. 36–40.

Синтез и строение комплексов циркония [Et2H2N]+2[ZrCl6]2–, [Me3NCH2Ph]+2[ZrCl6]2–• MeCN, [Ph3PC6H4(CHPh2-4)]+2[ZrCl6]2–•2 MeCN, и [Ph4Sb]+2[ZrCl6]2– / В.В. Шарутин, О.К. Шару-тина, Н.М. Тарасова, О.С. Ельцов // Известия академии наук. Серия химическая. – 2019. – Т. 68, №1. – С. 24–31.

Андреев, П.В. Синтез и строение комплексов циркония [Ph3PCH=CHMe]2[ZrCl6] и гафния [Ph3PCH2C(O)Me]2[HfCl6] / П.В. Андреев, Е.В. Лобанова, П.Д. Дрожилкин // Вестник ЮУрГУ. Серия «Химия». – 2019. – Т. 11, № 26. – С. 26–33. DOI: 10.14529/chem190403.

SMART and SAINT-Plus: Data Collection and Processing Software for the SMART System, Versions 5.0 (Bruker, Madison, Wisconsin, USA, 1998).

SHELXTL/PC: An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Versions 5.10 (Bruker, Madison, Wisconsin, USA, 1998).

OLEX2: a Complete Structure Solution, Refinement and Analysis Program / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea et al. // J. Appl. Crystallogr. – 2009. – Vol. 42(2). – P. 339–341. DOI: 10.1107/S0021889808042726.

Преч, Э. Определение строения органических соединений / Э. Преч, Ф. Бюльманн, К. Аффольтер. – М.: Мир, 2006. – 440 с.

Бацанов, С.С. Атомные радиусы элементов / С.С. Бацанов // Журн. неорг. хим. – 1991. – Т. 36, № 12. – С. 3015–3037.


Ссылки

  • На текущий момент ссылки отсутствуют.