Фотокаталитическая активность гранулированных композитных оксидов TiO2/SiO2 в реакциях деструкции красителей

Вячеслав Викторович Авдин, Александра Владимировна Буланова, Анна Викторовна Уржумова

Аннотация


В окружающей среде органические загрязнения подвергаются разложению при помощи микроорганизмов: происходит деструкция загрязнений на простые вещества – углекислый газ, воду и др. Органические поллютанты можно подразделить по происхождению на природные и искусственные. К природным относятся загрязнениям естественного происхождения: продукты метаболизма живых существ, остатки растений, животных и др. Эти вещества микроорганизмами, живущими в окружающей среде, разлагаются вполне успешно. Искусственные загрязнения образуются в результате различных технологических процессов или используются на предприятиях. Это фенол и его производные, красители, продукты нефтехимических производств. Данные загрязнения имеют синтетический характер, поэтому природная микрофлора к ним не приспособлена. Разложение таких загрязнений происходит очень медленно, иногда в течение нескольких десятков лет. В результате происходит накопление органических поллютантов в лучшем случае на специальных полигонах, в худшем – в окружающей среде (почва, озёра, реки). Существующие методы очистки – сорбция, ионный обмен, мембранная очистка – не разлагают загрязнения, а лишь концентрируют, что в глобальном смысле приводит к их накоплению. В ряде стран существуют целые озёра и даже реки, окрашенные во все цвета радуги из-за накоп-ленных органических загрязнений.
В данной работе исследованы фотокаталитические свойства композитных гранулированных фотокатализаторов, в которых наноразмерные фотокаталитически активные частицы на основе анатаза внедрены в объём гранулы силикагеля. Показано, что композитные гранулы успешно окисляют модельные органические загрязнения – красители метиленовый голубой, метиловый оранжевый и метиловый фиолетовый.

Ключевые слова


диоксид титана; анатаз; диоксид кремния; композитные фотокатализаторы; фотокаталитическая активность; фотокаталитические тесты; красители

Полный текст:

PDF

Литература


Herrmann J.-M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous pollutants. Catal. Today, 1999, vol. 53, pp. 115–129. DOI: 10.1016/S0920-5861(99)00107-8..

Zangeneh H., Zinatizadeh A.A.L., Habibi M., Akia M., Hasnain Isa M. Photocatalytic Oxidation of Organic Dyes and Pollutants in Wastewater Using Different Modified Titanium Dioxides: a Comparative Review. J. Ind. Eng. Chem., 2015, vol. 26, pp. 1–36. DOI: 10.1016/j.jiec.2014.10.043

Reddy P.A.K., Reddy P.V.L., Kwon E., Kim K.-H., Akter T., Kalagara S. Recent Advances in Photocatalytic Treatment of Pollutants in Aqueous Media. Environ. Int, 2016, vol. 91,pp. 94–103. DOI:10.1016/j.envint.2016.02.012

Kudo A., Miseki Y. Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev., 2009, vol. 38, pp. 253–278. DOI: 10.1039/B800489G

Kho Y.K., Iwase A., Teoh W.Y., Mädler L., Kudo A., Amal R. Photocatalytic H2 Evolution Over TiO2 Nanoparticles. The Synergistic Effect of Anatase and Rutile. J. Phys. Chem., 2010, vol.114, pp. 2821–2829. DOI: 10.1021/jp910810r

Habisreutinger S.N., Schmidt-Mende L., Stolarczyk J.K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. Int. Ed., 2013, vol. 52, pp. 7372–7408. DOI: 10.1002/anie.201207199.

Mori K., Yamashita H., Anpo M. Photocatalytic Reduction of CO2 with H2O on Various Titanium Oxide Photocatalysts. RSC Adv. 2012, vol. 2, p. 3165. DOI: 10.1039/c2ra01332k.

Banerjee S., Dionysiou D.D., Pillai S.C. Self-cleaning Applications of TiO2 by Photoinduced Hydrophilicity and Photocatalysis. Appl. Catal. B Environ., 2015, vol. 176, pp. 396–428. DOI: 10.1016/j.apcatb.2015.03.058.

Seabra M.P., Pires R.R., Labrincha J.A., Ceramic Tiles for Photodegradation of Orange II Solutions. Chem. Eng. J., 2011, vol. 171, pp. 692–702. DOI: 10.1016/j. cej.2011.04.028

Gurbuz M., Atay B., Dogan A. Synthesis of High-Temperature-Stable TiO2 and its Application on Ag+-activated Ceramic Tile. Int. J. Appl. Ceram. Technol., 2015, vol. 12, pp. 426–436. DOI: 10.1111/ijac.12165

Sreeja S., Shetty K V. Photocatalytic Water Disinfection Under Solar Irradiation by Ag@TiO Core-shell Structured Nanoparticles. Sol. Energy, 2017, vol. 157, pp. 236–243. DOI: 10.1016/j.solener.2017.07.057.

Wang G., Feng H., Jin W., Gao A., Peng X., Li W., Wu H., Li Z., Chu P.K., Long-term Antibacterial Characteristics and Cytocompatibility of Titania Nanotubes Loaded with Au Nanoparticles without Photocatalytic Effects, Appl. Surf. Sci., 2017, vol. 414, pp. 230–237. DOI: 10.1016/j.apsusc.2017.04.053

Guo L., Shan C., Liang J., Ni J., Tong M., Bactericidal Mechanisms of Au@TNBs Under Visible Light Irradiation. Colloids Surf. B Biointerfaces, 2015, vol. 128, pp. 211–218. DOI: 10.1016/j.colsurfb.2015.01.013

Zhang J., Suo X., Zhang J., Han B., Li P., Xue Y., Shi H., One-pot Synthesis of Au/TiO2 Heteronanostructure Composites with SPR Effect and its Antibacteria Activity, Mater. Lett., 2016, vol. 162, pp. 235–237. DOI: 10.1016/j.matlet.2015.09.136.

Wang G., Feng H., Gao A., Hao Q., Jin W., Peng X., Li W., Wu G., Chu P.K., Extracellular electron transfer from aerobic bacteria to Au loaded TiO2 semiconductor without light: a new bacteria killing mechanism other than localized surface plasmon resonance or microbial fuel cells, ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 24509–24516. DOI: 10.1021/acsami. 6b10052.

Li J., Qiao H., Du. Y., Chen C., Li X., Cui J., Kumar D., Wei Q. Electrospinning Synthesis of SiO2–TiO2 Hybrid Nanofibers With arge Surface Area and Excellent Photocatalytic Activity. Sci. World J., 2012, pp. 1–7.

Parale V.G., Kim T., Lee K.Y., Phadtare V.D., Dhavale R.P., Park H.H. Hydrophobic TiO2–SiO2 Composite Aerogels Synthesized Via in Situ Epoxy-ring Opening Polymerization and Sol-gel Process for Enhanced Degradation Activity. Ceramics International, 2020. vol. 46, № 4, pp. 4939–4946.

Hedayat B.M., Noorisepehr M., Dehghanifard E., Esrafili A., Norozi R. Evaluation of Photocatalytic Degradation of 2,4-Dinitrophenol from Synthetic Wastewater Using Fe3O4@SiO2@TiO2/rGO Magnetic Nanoparticles. J. Mol. Liq., 2018, vol. 264, pp. 571–578.

Tarigh G.D., Shemirani F., Maz'hari N.S. Fabrication of a Reusable Magnetic Multiwalled Carbon Nanotube–TiO2 Nanocomposite by Electrostatic Adsorption: Enhanced Photodegradation of Malachite Green. RSC Adv., 2015, vol. 5, pp. 35070–35079.

Krivtsov I., Ilkaeva M., Avdin V., Khainakov S., Garcia J. R., Ordóñez S., Diaz E., Faba L. A Hydrothermal Peroxo Method for Preparation of Highly Crystalline Silica-Titania Photocatalysts. Journal of Colloid and Interface Science, 2015, vol. 444, pp. 87–96.

Galbavy E.S., Ram K., Anastasio C. 2-Nitrobenzaldehyde as a Chemical Actinometer for Solution and Ice Photochemistry. J. Photochem. Photobiol., 2010, vol. 209, pp. 186–192.

Willett K.L., Hites R.A. Chemical Actinometry: Using O-Nitrobenzaldehyde to Measure Lamp Intensity in Photochemical Experiments. Journal of Chemical Education, 2000, vol. 77, № 7, p. 900.

Guettaï N., Ait Amar H. Photocatalytic Oxidation of Methyl Orange in Presence of Titanium Dioxide in Aqueous Suspension. Part I: Parametric Study., Desalination, 2005, vol. 185, pp. 427–437.

Shan R., Lu L., Gu J., Zhang Y., Yuan H., Chen Y., Luo B. Photocatalytic Degradation of Me-thyl Orange by Ag/TiO2/biochar Composite Catalysts in Aqueous Solutions. Materials Science in Semi-conductor Processing, 2020, vol. 114, p. 105088.

Tichapondwa S.M., Newman J.P., Kubheka O. Effect of TiO2 Phase on the Photocatalytic Deg-radation of Methylene Blue Dye, Physics and Chemistry of the Earth, Parts A/B/C, 2020, vol. 118, p. 102900.


Ссылки

  • На текущий момент ссылки отсутствуют.