ВАРИАЦИИ МЕТОДОВ МОДЕЛИРОВАНИЯ ЭЛЕКТРОННЫХ И СПЕКТРАЛЬНЫХ СВОЙСТВ В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ ЙОДА

Ирина Дмитриевна Юшина, Люция Марсельевна Булатова, Светлана Эдуардовна Насибуллина, Екатерина Владимировна Барташевич

Аннотация


На примере кристаллической структуры йода произведен подбор оптимальных базисных наборов, позволяющих в условиях перйодических расчетов воспроизводить межъядерные расстояния, распределение электронной плотности и спектральные свойства йодсодержащих молекулярных кристаллов. Сопоставлены преимущества двух подходов к учету эффектов релятивизма: эффективные остовные псевдопотенциалы и базисный набор гауссового типа, конструируемый на основе методологии Дугласа-Кролла-Гесса. Показано, что последний позволяет корректно воспроизвести не только экспериментально наблюдаемые геометрические параметры кристалла йода и характеристические колебания в спектрах комбинационного рассеяния, но и накопление электронной плотности в области внешней валентной оболочки атома йода, что наглядно иллюстрирует функция лапласиана электронной плотности.


Ключевые слова


кристаллическая структура йода; галогенные связи; топологический анализ электронной плотности; релятивистский эффект; спектроскопия комбинационного рассеяния

Полный текст:

PDF

Литература


Kupper F.C., Feiters M.C., Olofsson B., Kaiho T., Yanagida S., Zimmermann M.B., Carpenter L.J., Luther G.W., Lu Z., Jonsson M., Kloo L. [Commemorating Two Centuries of Iodine Research: An Interdisciplinary Overview of Current Research]. Angew. Chem., Int. Ed., 2011, vol.50, рр. 11598–11620.

Svensson P. H., Kloo L. [A Vibrational Spectroscopic, Structural and Quantum Chemical Study of the Triiodide Ion]. Journal of the Chemical Society, Dalton Trans, 2000, pp. 2449–2455.

Sakurai T., Sundaralingam M., Jeffrey G.A. [A Nuclear Quadrupole Resonance and X-ray Study of the Crystal Structure of 2,5-dichloroaniline]. Acta Crystallogr., 1963, vol. 16., pp. 354–363.

Desiraju G.R. [Crystal Engineering: the Design of Organic Solids]. J. Appl. Cryst., 1991, vol. 16, pp. 265.

Politzer P., Murray J.S., Clark T. [Halogen Bonding: an Electrostatically-driven Highly Directional Noncovalent Interaction]. Phys. Chem. Chem. Phys., 2010, vol. 12, pp. 7748–7757.

Politzer P. , Riley K.E., Bulat F.A., Murray J.S. [Perspectives on Halogen Bonding and Other σ-hole Interactions: Lex Parsimoniae (Occam’s Razor)]. Comput. Theor. Chem., 2012, pp. 2–8.

Clark T., Hennemann M., Murray J.S., Politzer P. [Halogen Bonding: the σ-Hole]. J. Mol. Model., 2007, vol. 13, pp. 291–296.

Desiraju G.R. Ho P.S., Kloo L., Legon A.C., Marquardt R., Metrangolo P., Politzer A. P., Resnati G., Rissanen K. [Definition of the Halogen Bond (IUPAC Recommendations 2013)]. Pure Appl. Chem., 2013, vol.85. рр. 1711–1713.

Bartashevich E.V., Yushina I.D., Stash A.I., Tsirelson V.G. [Halogen Bonding and Other Iodine Interactions in Crystals of Dihydrothiazolo(Oxazino)Quinolinium Oligoiodides from the Electron-Density Viewpoint]. Cryst Growth Des., 2014, vol.14. рр. 5674–5684.

R.F.W. Bader, Atoms in Molecules. A Quantum Theory, Oxford University Press, New York, 1990, 532 p.

Tsirelson V.G., Zou P.F., Tang T.H., Bader R. [Topological Definition of Crystal Structure: Determination of the Bonded Interactions in Solid Molecular Chlorine]. Acta Crystallogr., 1995, vol.51. рр. 143–153.

Kohout M., Savin A., Preuss H. [Contribution to the Electron Distribution Analysis. I. Shell Structure of Atoms. J. Chem. Phys., 1991, vol.95, рр. 1928–1929.

Hunter G. [Conditional Probability Amplitudes in Wave Mechanics]. Int. J. Quant. Chem., 1975, vol.9, рр. 237–238.

Silvi B., Savin A., Causà M. [Classification of Chemical B based on Topological Analysis of Electron Localization Functions]. Nature, 1994, vol. 371, pp. 683–686.

Pilmé J., Renault E., Ayed T., Montavon G., Galland N. J. [Introducing the ELF Topological Analysis in the Field of Quasirelativistic Quantum Calculations]. Chem. Theor. Comput., 2012, vol. 8, pp. 2985 – 2990.

Svensson P. H., Kloo L. [Synthesis, Structure, and Bonding in Polyiodide and Metal Iodide-Iodine Systems]. Chemical Reviews, 2003, vol. 103, pp. 1649–1684.

Deplano P., Ferraro J. R., Mercuri M. L., Trogu E. F. Structural and Raman Spectroscopic Studies as Complementary Tools in Elucidating the Nature of the Bonding in Polyiodides and in Donor-I2 Adducts. Coordination Chemistry Reviews, 1999, vol.188, рр. 71–95.

Al-Hashimi N. A., Hussein Y. H. A. [Ab Initio Study on the Formation of Triiodide CT Complex from the Reaction of Iodine with 2,3-Diaminopyridine]. Spectrochimica Acta Part A, 2010, vol.75, рр. 198–202.

Otsuka M., Mori H., Kikuchi H., Takano K. [Density Functional Theory Calculations of Iodine Cluster Anions: Structures, Chemical Bonding Nature, and Vibrational Spectra]. Computational and Theoretical Chemistry, 2011, vol.973, рр. 69–75.

Matta C.F., Boyd R.J. [The Quantum Theory of Atoms in Molecules. From Solid State to DNA and Drug Design]. Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 527.

Douglas M., Kroll N.M. [Quantum Electrodynamical Corrections to Fine-structure of Gelium]. Ann Phys, 1974, vol.82, рр. 89–155.

Hess B.A. [Relativistic Electronic-structure Calculations Employing a Two-component No-pair Formalism with External-field Projection Operators]. Phys. Rev., 1986, vol.33, рр. 3742–3748.

Bertolotti F., Tsirelson V. G. Shishkina A. V., Forni A., Gervasio G., Stash A. I. [The Intermolecular Bonding Features in Solid Iodine]. Crystal Growth & Design, 2014, рр. 1–20.

Congeduti A., Nardone M., Postorino P. [Polarized Raman Spectra of a Single Crystal of Iodine]. Chemical Physics, 2000, vol.256, рр. 117–123.

Peterson K.A. et al. [On the Spectroscopic and Thermochemical Properties of ClO, BrO, IO, and Their Anions]. J. Phys. Chem, 2006. vol.110, рр. 13877–13878.

Godbout N., Salahub D. R. et al. [Optimization of Gaussian-type Basis Sets for Local Spin Density Functional Calculations. Part I. Boron Through Neon, Optimization Technique and Validation]. Can. J. Chem, 1992, vol.70, рр. 560–562.

http://www.tcm.phy.cam.ac.uk/~mdt26/basis_sets/I_basis.txt

Jorge F.E., Canal Neto A., Camiletti G.G., Machado S.F. [Contracted Gaussian Basis Sets for Douglas-Kroll-Hess Calculations: Estimating Scalar Relativistic Effects of Some Atomic and Molecular Properties]. J. Chem. Phys., 2009, vol. 130, pp. 064108.

Barros C.L., Jorge F.E., Canal Neto A., Campos M. [Gaussian Basis Set of Double Zeta Quality for Atoms Rb Through Xe: Application in Non-relativistic and Relativistic Calculations of Atomic and Molecular Properties]. Mol. Phys., 2010, vol.108, рр. 1965–1972.

Reiher М. [Relativistic Douglas–Kroll–Hess theory]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, vol.2, рр. 139–149.

Hansen N.K., Coppens P. [Testing Aspherical Atom Refinements on Small-molecule Data Sets]. Acta Cryst, 1978, vol.34, рр. 909–921.


Ссылки

  • На текущий момент ссылки отсутствуют.