Особенности сорбции L-аминокислот на нанокристаллическом анатазе

Олег Игоревич Большаков, Владимир Александрович Потемкин, Мария Александровна Гришина, Алексей Сергеевич Галушко, Сергей Владимирович Мерзлов, Роман Сергеевич Морозов, Артем Олегович Щелоков, Вадим Владимирович Попов

Аннотация


Особенности взаимодействия биомолекул, таких как протеины и пептиды с неорганическими поверхностями вообще и с оксидом титана в частности становятся ключевым фактором биотехнологии и бионанотехнологии. Аминокислоты часто используются в качестве модельных фрагментов пептидов и протеинов для изучения их свойств в различных средах и при изучении новых поверхностей. Несмотря на высокий запрос на фундаментальные представления о взаимодействии биомолекул с поверхностью оксида титана, знания в этой области представлены фрагментарно и не дают целостной картины. В этой статье проведена попытка изучения сорбции аминокислот на оксиде титана в унифицированных условиях. Сорбция L-аланина была интерпретирована квантово-механическим моделированием.

Ключевые слова


оксид титана; анатаз; наночастицы; L-аминокислоты; адсорбция; ИК-спектроскопия

Полный текст:

PDF

Литература


Weiner S., Dove P.M. Biomineralization, Reviews in Mineralogy and Geochemistry, 2003, vol. 54, pp. 1–29. DOI: 10.2113/0540001

Albrektsson T., Branemark P.I., Hansson H.A., Kasemo B., Larsson K., Lundstrom I., McQueen D.H., Skalak R. The Interface Zone of Inorganic Implants In vivo: Titanium Implants in Bone. Annals of Biomedical Engineering, 1983, vol. 11, pp. 1–66. DOI: 10.1007/BF02363944.

Duruphthy O., Bill J., Aldinger F. Bioinspired Synthesis of Crystalline TiO2: Effect of Amino Acids on Nanoparticles Structure and Shape. Crystal Growth and Design, 2007, vol. 7, pp. 2696–2704. DOI: 10.1021/cg060405g.

Köppen S., Bronkalla O., Langel W. Adsorption Configurations and Energies of Amino Acids on Anatase and Rutile Surfaces. Journal of Physical Chemistry B, 2008, vol. 112, pp. 13600–13606. DOI: 10.1021/jp803354z.

Addadi L., Weiner S. Interactions Between Acidic Proteins and Crystals: Stereochemical Requirements in Biomineralization. Proceedings of National Academy of Science U.S.A., 1985, vol. 82, pp. 4110–4114. DOI: 10.1073/pnas.82.12.4110.

Oren E.E., Tamerler C., Sahin D., Hnilova M., Seker U.O.S., Sarikaya M., Samudrala R. A Novel Knowledge-Based Approach to Design Inorganic-Binding Peptides. Bioinformatics, 2007, vol. 23, pp. 2816–2822. DOI: 10.1093/bioinformatics/btm436.

Rezania A., Johnson R., Lefkow A.R., Healy K.E. Bioactivation of Metal Oxide Surfaces. Surface Characterization and Cell Response. Langmuir, 1999, vol. 15, pp. 6931–6939. DOI: 10.1021/la990024n.

Gratzel M. Photoelectrochemical cells. Nature, 2001, vol. 414, pp. 338–344. DOI: 10.1038/35104607.

Kubota Y., Shuin T., Kawasaki C., Hosaka M., Kitamura H., Cai R., Sakai H., Hashimoto K., Fujishima A. Photokilling of T-24 Human Bladder Cancer Cells with Titanium Dioxide. British Journal of Cancer, 1994, vol. 70, pp. 1107–1111. DOI: 10.1038/bjc.1994.456.

Sun R.D., Nakajima A., Fujishima A., Watanabe T., Hashimoto K. Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films. Journal of Physical Chemistry B, 2001, vol. 105, pp. 1984–1990. DOI: 10.1021/jp002525j

Diebold U. Surface Science of Titanium Dioxide. Surface Science Reports, 2003, vol. 48, pp. 53–229. DOI: 10.1016/S0167-5729(02)00100-0.

Topoglidis E., Lutz T., Willis R.L., Barnett C.J., Cass A.E.G., Durrant J.R. Protein Adsorption on Nanoporous TiO2 Films: a Novel Approach to Studying Photoinduced Protein/Electrode Transfer Reactions. Faraday Discussions, 2000, vol. 116, pp. 35–46. DOI: 10.1039/B003313H.

Mudunkotuwa I.A., Grassian V.H. Histidine Adsorption on Nanoparticles: An Integrated Spectroscopic, Thermodynamic, and Molecular-Based Approach toward Understanding Nano-Bio Interactions. Langmuir 2014, vol. 30, 8751–8760. DOI: 10.1021/la500722n

Okazaki S., Aoki T., Tani K. The Adsorption of Basic α-Amino Acids in an Aqueous Solution by Titanium(IV) Oxide. Bulletin of Chemical Society of Japan, 1981, vol. 54, pp. 1595–1599. DOI: 10.1246/bcsj.54.1595.

Praveen P., Viruthagiri G., Mugundan S., Shanmugam N. Structural, Optical and Morphological Analyses of Pristine Titanium Dioxide Nanoparticles – Synthesized via Sol–Gel Route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, vol. 117, pp. 622–629. DOI: 10.1016/j.saa.2013.09.037.

Heinrikson R.L., Meredith S.C. Amino Acid analysis by Reverse-phase High-Performance Liquid Chromatography: Precolumn Derivatization with Phenylisothiocyanate. Analytical Biochemistry, 1984, vol. 136, pp. 65–74. DOI: 10.1016/0003-2697(84)90307-5

Cheeseman J.R., Trucks G.W., Keith T.A., Frisch M.J. A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors. J. Chem. Phys., 1996, vol. 104, pp. 5497–5509. DOI: 10.1063/1.471789

Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. General Atomic and Molecular Electronic Structure System. J. Comput. Chem., 1993, vol. 14, pp. 1347–1363. DOI: 10.1002/jcc.540141112

Gordon M.S., Schmidt M.W. Advances in Electronic Structure Theory: GAMESS a Decade Later. Chapter 41. in: Theory and Applications of Computational Chemistry, the First Forty Years (C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria, eds.). Amsterdam: Elsevier, 2005, pp. 1167–1189. DOI: 10.1016/B978-044451719-7/50084-6

Kandegedara A., Rorabacher D.B. Noncomplexing Tertiary Amines as “Better” Buffers Covering the Range of pH 3−11. Temperature Dependence of Their Acid Dissociation Constants. Analytical Chemistry, 1999, vol. 71, pp. 3140–3144. DOI: 10.1021/ac9902594.

Ojamae L., Aulin C., Pedersen H., Kall P.O. IR and Quantum-Chemical Studies of Carboxylic Acid and Glycine Adsorption on Rutile TiO2 Nanoparticles. Journal of Colloid Interface Science, 2006, vol. 296, pp. 71–78. DOI: 10.1016/j.jcis.2005.08.037

Schmidt M.; Steinemann S. G. XPS Studies of Amino-Acids Adsorbed on Titanium Dioxide Surfaces. Fresenius’ Journal of Analytical Chemistry, 1991, vol. 341, pp. 412–415. DOI: 10.1007/BF00321947

Chen J., Franking R., Ruther R.E., Tan Y., He X., Hogendoorn S.R., Hamers R.J. Formation of Molecular Monolayers on TiO2 Surfaces: A Surface Analogue of the Williamson Ether Synthesis. Langmuir, 2011, vol. 27, pp. 6879–6889. DOI: 10.1021/la2008528.

Gottlieb H.E., Kotlyar V., Nudelman A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. Journal of Organic Chemistry, 1997, vol. 62, pp. 7512–7515. DOI: 10.1021/jo971176v

Reichardt C., Welton T. Solvents and Solvent Effects in Organic Chemistry. 4th Edition. Berlin: Wiley-VCH, 2010. 718 p. DOI: 10.1002/9783527632220




DOI: http://dx.doi.org/10.14529/chem170101

Ссылки

  • На текущий момент ссылки отсутствуют.