Моделирование нековалентных взаимодействий кубовых красителей с фрагментами нитрида углерода
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Dai H., Gao X., Liu E., Yang Y., Hou W., Kang L., Fan J., Hu X.Synthesis and Characterization of Graphitic Carbon Nitride Sub-Microspheres Using Microwave Method under Mild Condition. Diamond and Related Materials, 2013, vol. 38, pp. 109–117. DOI: 10.1016/j.diamond.2013.06.012
Zheng Y., Jiao Y., Zhu Y., Li L.H., Han Y., Chen Y., Du A., Jaroniec M., Qiao S.Z. Hydrogen Evolution by a Metal-Free Electrocatalyst. Nature Communications, 2014, vol. 5. DOI: 10.1038/ncomms4783
Ong W.J., Tan L.L., Ng Y.H., Yong S.T., Chai S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: are We a Step Closer to Achieving Sustainability? Chemical Reviews, 2016, vol. 116, no. 12, pp. 7159–7329. DOI: 10.1021/acs.chemrev.6b00075
Liu J., Liu Y., Liu N., Han Y., Zhang X., Huang H., Lifshitz Y., Lee S.-T., Zhong J., Kang Z. Metal-Free Efficient Photocatalyst for Stable Visible Water Splitting via a Two-Electron Pathway. Science, 2015, vol. 347, no. 6225, pp. 970–974. DOI: 10.1126/science.aaa3145
Tay Q., Kanhere P., Ng C.F., Chen S., Chakraborty S., Huan A.C.H., Sum T.C., Ahuja R., Chen Z. Defect Engineered g-C3N4 for Efficient Visible Light Photocatalytic Hydrogen Production. Chemistry of Materials, 2015, vol. 27, no. 14, pp. 4930–4933. DOI: 10.1021/acs.chemmater.5b02344
Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., Antonietti M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nature Materials, 2009, vol. 8, no. 1, pp. 76–80. DOI: 10.1038/nmat2317
Tyborski T., Merschjann C., Orthmann S., Yang F., Lux-Steiner M.C. Schedel-Niedrig Th. Tunable Optical Transition in Polymeric Carbon Nitrides Synthesized via Bulk Thermal Condensation. Journal of Physics Condensed Matter, 2012, vol. 24, no. 16. DOI: 10.1088/0953-8984/24/16/162201
Liu G., Niu P., Sun C., Smith S.C., Chen Z., Lu G.Q.M., Cheng H. Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4. Journal of the American Chemical Society, 2010, vol. 132, no. 33, pp. 11642–11648. DOI: 10.1021/ja103798k
Bojdys M.J., Müller J.O., Antonietti M., Thomas A. Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride. Chemistry – A European Journal, 2008, vol. 14, no. 27, pp. 8177–8182. DOI: 1701.00873v1
Ong W.J., Tan L.L., Ng Y.H., Yong S.T., Chai S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: are We a Step Closer to Achieving Sustainability? Chemical Reviews, 2016, vol. 116, no. 12, pp. 7159–7329. DOI: 10.1021/acs.chemrev.6b00075
Yang F., Lublow M., Orthmann S., Merschjann C., Tyborski T., Rusu M., Kubala S., Thomas A., Arrigo R., Hävecker M., Schedel-Niedrig T. Metal-Free Photocatalytic Graphitic Carbon Nitride on p-Type Chalcopyrite as a Composite Photocathode for Light-Induced Hydrogen Evolution. ChemSusChem, 2012, vol. 5, no. 7, pp. 1227–1232.DOI: 10.1002/cssc.201100691
Liu G., Niu P., Sun C., Smith S.C., Chen Z., Lu G.Q.M., Cheng H. Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4. Journal of the American Chemical Society, 2010, vol. 132, no. 33, pp. 11642–11648. DOI: 10.1021/ja103798k
Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996, vol. 77, no. 18, pp. 3865–3868. DOI: 10.1103/PhysRevLett.77.3865
Kresse G., Furthmüller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 1996, vol. 6, no. 1, pp. 15–50. DOI: 10.1016/0927-0256(96)00008-0
Perdew J.P., Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Physical Review B, 1992, vol. 45, no. 23, pp. 13244–13249. DOI: 10.1103/PhysRevB.45.13244
Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.I.J., Refson K., Payne M.C. First Principles Methods Using CASTEP. Zeitschrift für Kristallographie, 2005, vol. 220, no. 5, pp. 567–570. DOI: 10.1524/zkri.220.5.567.65075.
Ceperley D.M., Alder B.J. Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters, 1980, vol. 45, no. 7, pp. 566–569. DOI: 10.1103/PhysRevLett.45.566
Ortmann F., Bechstedt F., Schmidt W.G. Semiempirical van der Waals Correction to the Density Functional Description of Solids and Molecular Structures. Physical Review B – Condensed Matter and Materials Physics, 2006, vol. 73, no. 20, pp. 1–10. DOI: 10.1103/PhysRevB.73.205101
Heyd J., Scuseria G.E., Ernzerhof M. Erratum: Hybrid Functionals Based on a Screened Cou-lomb Potential. (Journal of Chemical Physics (2003) 118 (8207)). Journal of Chemical Physics, 2006, vol. 118, no. 18, pp. 8207–8215. DOI:10.1063/1.2204597
Burke K., Werschnik J., Gross E.K.U. Time-Dependent Density Functional Theory: Past, Pre-sent, and Future. The Journal of Chemical Physics, 2005, vol. 123, no. 6, pp. 62206. DOI: 10.1063/1.1904586
Cramer C.J. Essentials of computational chemistry: theories and models. John Wiley & Sons, 2013. 618 p.
Espinosa E., Molins E., Lecomte C. Hydrogen Bond Strengths Revealed by Topological Anal-yses of Experimentally Observed Electron Densities. Chemical Physics Letters, 1998, vol. 285,
pp. 170–173. DOI: 10.1016/S0009-2614(98)00036-0
AIMAll (Version 17.11.14), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2017.
Ссылки
- На текущий момент ссылки отсутствуют.