Modification of Natural Zeolite by Carbon Nanotubes for an Improvement in the Sorption Properties

T. Yu. Dyachkova, E. S. Klimov, O. A. Davydova, M. V. Buzaeva, I. A. Makarova, Ya. E. Krivosheeva, Y. I. Sudin, Z. V. Podolskaya

Abstract


The possibility of using initial and modified natural minerals as sorbents for manufacture of economically acceptable technological systems for purifying technological aqueous solutions and liquids has been studied. The processes of modifying natural zeolite by carbon nanotubes have been investigated. As a modifying additive, multi-walled carbon nanotubes have been used in the sorbent, obtained by the method of chemical vapor deposition in the argon flow using organometallic compounds. Before use, multi-walled carbon nanotubes were ground. Since the compatibility of the nanocarbon material and the sorbent matrix largely depends on the presence of polar carboxyl groups on the surface of the zeolite and the surface of the material itself, the carbon nanotubes were subjected to the process of functionalization by polar groups. In order to obtain carboxyl groups on the surface of multi-walled carbon nanotubes, it was treated by an oxidizing mixture of concentrated nitric and sulfuric acids. By reaction with triethanolamine on the basis of carboxylated carbon nanotubes, quaternary ammonium salt was grafted onto the surface of the tubes. On the basis of the obtained results a technique for modifying natural zeolite with multi-walled carbon nanotubes was developed by co-precipitating tubes with zeolite in the presence of aluminum sulfate. During the precipitation a fine powder of the sorbent is formed with the inclusion of nanocarbon material. The most stable system is formed by co-precipitation of zeolite and carboxylated nanotubes. Sorption ability of the composite material with respect to heavy metal ions has been studied. For applicaton of modified zeolite in purification systems, the dependence of the extraction ratio of zinc ions on the content of carboxylated nanotubes in the zeolite was studied. Zeolite has a rigid frame structure and it is possible to use ultrasonic intensification of sorption processes for it. The time of ultrasonic treatment was 80 seconds. The extraction ratio of heavy metals depends on the content of carbon nanotubes in the sorption material and reaches 98.0 % for zinc ions with the 0.2 % content of tubes in the modified zeolite.

Keywords


modification; multi-walled carbon nanotubes; composite material; zeolite; absorption; heavy metals

References


Булыжев, Е.М. Ресурсосберегающее применение смазочно-охлаждающих жидкостей при металлообработке / Е.М. Булыжев, Л.В. Худобин. – М.: Машиностроение, 2004. – 352 с.

Булыжев, Е.М. Новое поколение силовых очистителей водных технологических жидкостей / Е.М. Булыжев, А.Ю. Богданов, Е.Н. Меньшов. – Ульяновск: УлГТУ, 2010. – 420 с.

Климов, Е.С. Природные сорбенты и комплексоны в очистке сточных вод / Е.С. Климов, М.В. Бузаева. – Ульяновск: УлГТУ, 2011. – 201 с.

Раков, Э.Г. Нанотрубки и фуллерены / Э.Г. Раков. – М.: Университетская книга: Логос, 2006. – 376 с.

Sanchez, F. Nanotechnology in concrete – a review / F. Sanchez, K. Sobolev // Construction and Building Materials. – 2010. – № 24 (11). – Р. 2060–2071. DOI:10.1016/j.conbuildmat.2010.03.014

Лукашин, А.В. Функциональные наноматериалы / А.В. Лукашин, А.А. Елисеев, Ю.Д. Третьякова. – М.: ФИЗМАТЛИТ, 2007. – 456 с.

Тарасов, Б.П. Сорбция водорода углеродными наноструктурами / Б.П. Тарасов, Н.Ф. Гольдшлегер // Альтернативная энергетика и экология. – 2002. – № 3. – С. 20–38.

Елецкий, А.В. Сорбционные свойства углеродных наноструктур / А.В. Елецкий // Успехи физических наук. – 2004. – Т. 174, № 11. – С. 1191–1231.

Hydrogen adsorption/desorption behavior of multi–walled carbon nanotubes with different diameters / P.–X. Hou, S.–T. Xu, Z. Ying et al. // Carbon – 2003. – V. 41, № 5. – P. 2471–2476. DOI:10.1016/S0008-6223(03)00271-9

Adsorption of nicotine and tar from the mainstream smoke of cigarettes by oxidized carbon nanotubes / Z. Chen, L. Zhang, Y. Tang, Z. Jia // Appl. Surf. Sci. – 2006. – V. 252, № 8. – P. 2933–2937. DOI:10.1016/j.apsusc.2005.04.044

Study of nitrogen adsorbed on single–walled carbon nanotube bundles / D.–H. Yoo, G.–H. Rue, Y.–H. Hwang, H.–K. Kim // J. Phys. Chem. B. – 2002. – V. 106, № 13. – P. 3371–3374. DOI: 10.1021/jp013004e

Capillary condensation of N2 on multiwall carbon nanotubes / S. Inoue, N. Ichikuni, T. Suzuki, K. Kaneko // J. Phys. Chem. B. – 1998. – V. 102, № 24. – P. 4689–4692. DOI: 10.1021/jp973319n

Preparation and modification of carbon nanotubes / D. Zhang, L. Shi, J. Fang, X. Li, K. Dai // Mater. Lett. – 2005. – V. 59. – P. 4044–4047. DOI:10.1016/j.matlet.2005.07.081

Li, Z. Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification / Z. Li, Z. Pan, S. Dai // J. Colloid Interface Sci. – 2004. – V. 277, № 1. – Р. 35–42. DOI: 10.1016/j.jcis.2004.05.024

Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation / M.T. Martinez, M.A. Callejas, A.M. Benito et al. / Carbon. – 2003. – V. 41, № 12. – P. 2247–2256. DOI: 10.1016/S0008-6223(03)00250-1

Ткачев, А.Г. Углеродный наноматериал «Таунит» – структура, свойства, производство и применения / А.Г. Ткачев // Перспективные материалы. – 2007. – Т. 177, № 3. – С. 5–9.

Lu, Ch. Removal of nickel (II) from aqueous solution by carbon nanotubes / Ch. Lu, Ch. Liu // J. Chem. Technol. Biotechnol. – 2006. – № 81, № 12. – P. 1932–1940. DOI: 10.1002/jctb.1626

Roy, A. Removal of Cu(II), Zn(II) and Pb (II) from water using microwave–assisted synthesized maghemite nanotubes / A. Roy, J. Bhattacharya // Chem. Eng. J. – 2012. – V. 211–212. – P. 493–500. DOI:10.1016/j.cej.2012.09.097

Alaa, M. Efficient removal of La (III) and Nd (III) from aqueous solutions using carbon nano-particles / M. Alaa, A. Kolesnikov, A. Desyatov // American Journal of Analytical Chemistry. – 2014. –V. 5, № 17. – P. 1273–1284. DOI:10.4236/ajac.2014.517133

Afkhami, A. Adsorptive removal of Congo red, a carcinogenictextile dye, from aqueous solutions by maghemite nanoparticles / A. Afkhami, R. Moosavi // J. Hazard. Mater. – 2010. – V. 174. – P. 398–403. DOI: 10.1016/j.jhazmat.2009.09.066

Милютина, А.Д. Адсорбция ионов меди из водного раствора с использованием углеродных наноматериалов / А.Д. Милютина, В. А. Колесников // Успехи в химии и химической технологии. – 2015. – Т. 29, № 1. – С. 43–45.

Структурно-адсорбционные свойства углеродных нанотрубок, модифицированных кислородом / Л.Ю. Котел, С.Я. Бричка, А.В. Бричка, П.П. Горбик // Химия, физика и технология поверхности. – 2007. – № 13. – С. 217–223.

Строение поверхности и адсорбционные свойства многослойных углеродных нанотрубок / С.Я. Бричка, Л.А. Белякова, Г.П. Приходько, Н.В. Роик // Известия АН. Серия химическая. – 2006. – № 10. – С. 1712–1715.

Некоторые аспекты синтеза многостенных углеродных нанотрубок химическим осаждением из паровой фазы и характеристики полученного материала / Е.С. Климов, М.В. Бузаева, О.А. Давыдова и др. // Журнал прикладной химии. – 2014. – Т. 87, № 8. – С. 1128–1132.

Изменение поверхности и свойств многостенных углеродных нанотрубок при физико-химическом модифицировании / Е.С. Климов, М.В. Бузаева, О.А. Давыдова и др. // Журнал прикладной химии. – 2015. – Т. 88, № 8. – С. 1105–1110.

Фильтровальные материалы на основе многостенных углеродных нанотрубок для очистки жидкостей / Т.Ю. Дьячкова, А.В. Исаев, И.А. Макарова и др. // Вестник ЮУрГУ. Серия «Химия». – 2017. – Т. 9, № 3. – С. 5–11. DOI:10.14529/chem170301




DOI: http://dx.doi.org/10.14529/chem180301

Refbacks

  • There are currently no refbacks.