Строение органических и элементоорганических соединений
Аннотация
λ = 0,71073 Å, графитовый монохроматор) при 293 К. Cоединение [Ph3PMe] [RuCl4(DMSO)2] (1) P-1, a = 8,4181(3), b = 8,9389(3), c = 11,1396(4) Å, a = 69,754(1),
β = 81,913(2), g = 64,491(1) град., V = 709,75(4) Å3, Z = 1. [Ph3PC6H4CH2CN] Cl × CHCl3 (2),
P 21/n, a = 9,846(6) Å, b = 15,782(14) Å, c = 15,111(10) Å, a = 90, β = 91,027(18), g = 90 град., V = 2348(3) Å3, Z = 4. Ph4SbOC6H4(NO2-4) (3), P-1, a = 11,101(6), b = 12,684(6),
c = 19,359(9) Å, a = 80,973(17), β = 80,17(2), g = 72,31(3) град., V = 2543(2) Å3, Z = 4.
(4-BrC6H4)3Sb (4), P-1, a = 6,273(12), b = 12,83(2), c = 13,26(3) Å, a = 78,67(8),
β = 84,33(9), g = 80,81(7) град., V = 1031(3) Å3, Z = 2. Ph4PBr·H2O (5), P-1, a = 10,025(10), b = 10,676(10), c = 10,706(13) Å, a = 77,56(4), β = 71,80(4), g = 83,26(3) град., V = 1061(2) Å3, Z = 2. [4-MeOC6H4]3Sb (6), R-3, a = 13,27(3), b = 13,27(3), c = 19,24(7) Å, a = 77,56(4), β = 90, g = 120 град., V = 2935(20) Å3, Z = 6. [Ph3PCH2C6H4CN-4]Cl, P 21/n, a = 9,456(6),
b = 14,733(9), c = 16,271(9) Å, a = 90, β = 104,83(2), g = 90 град., V = 2191(2) Å3, Z = 4. [Ph3PCH2OH]Сl, P 21/c, a = 8,888(9), b = 17,795(19), c = 11,278(12) Å, a = 90, β = 99,52(4),
g = 90 град., V = 1759(3) Å3, Z = 4.
Ключевые слова
Полный текст:
PDFЛитература
Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Display-ing Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
OLEX2: a Complete Structure Solution, Refinement and Analysis Program / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea et al. // J. Appl. Cryst. – 2009. – V. 42. – P. 339–341. DOI: 10.1107/S0021889808042726.
Cambridge Crystallographic Data Center. 2019 (deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).
Шарутина, О.К. Молекулярные структуры органических соединений сурьмы (V) / О.К. Шарутина, В.В. Шарутин. – Челябинск: Издательский центр ЮУрГУ, 2012. – 395 с.
Interaction of Pentaphenylantimony with Carboranedicarboxylic Acid / V.V. Sharutin, O.K. Sharutina, Y.O. Gubanova et al. // J. Organomet. Chem. – 2015. – V. 798. – P. 41-45.
Synthesis and Structure of bic(tetraphenyl-λ5-stibanyl)-1,7-carborane-1,7-dicarboxylate / V.V. Sharutin, O.K. Sharutina, Y.O. Gubanova et al. // Mendeleev Commun. – 2018. – V. 28. – P. 621-622.
Rawashdeh-Omary, M.A. Oligomerization of Au(CN)2- and Ag(CN)2-ions in solution via ground-state aurophilic and argentophilic bonding / M.A. Rawashdeh-Omary, M.A. Omary, H.H. Patterson // J. Am. Chem. Soc. – 2000. – V. 122. – P. 10371–10380. DOI: 10.1021/ja001545w.
Luminescence thermochromism in dicyanoargentate (I) ions doped in alkali halide crystals / M.A. Rawashdeh-Omary, M.A. Omary, G.E. Shankle et. al. // J. Phys. Chem. B. – 2000. – V. 104. – P. 6143–6151. DOI: 10.1021/jp000563x.
Assefaa, Z. Hydrothermal syntheses, structural, Raman, and luminescence studies of Cm[M(CN)2]3 ∙ 3H2O and Pr[M(CN)2]3 ∙ 3H2O (M = Ag, Au) 2. Hetero-bimetallic coordination polymers consisting of trans-plutonium and transition metal elements / Z. Assefaa, R.G. Haireb, R.E. Sykorac // Journal of Solid State Chemistry. – 2008. – V. 181. – P. 382–391. DOI: 10.1016/j.jssc.2007.11.036.
Tunable photoluminescence of closed-shell heterobimetallic Au–Ag dicyanide layered systems / J.C.F. Colis, Ch.Larochelle, E.J. Ferna´ndez et. al. // J. Phys. Chem. B. – 2005. – V. 109. – P. 4317–4323. DOI: 10.1021/jp045868g.
Hydrothermal synthesis, structural, Raman, and luminescence studies of Am[M(CN)2]3∙3H2O and Nd[M(CN)2]3 ∙ 3H2O (M=Ag, Au): Bimetallic coordination polymers containing both trans-plutonium and transition metal elements / Z. Assefaa, K. Kalachnikova, R.G. Hairec et al. // Journal of Solid State Chemistry. – 2007. – V. 180. – P. 3121–3129. DOI: 10.1016/j.jssc.2007.08.032.
Roberts, R.J. Color-tunable and white-light luminescence in lanthanide−dicyanoaurate coordination polymers / R.J. Roberts, D. Le, D.B. Leznoff // Inorg. Chem. – 2017. – V. 56, iss. 14. – P. 7948–7959. DOI: 10.1021/acs.inorgchem.7b00735.
Wheatley, P.J. The Crystal and Molecular Structure of Aspirin / P.J. Wheatley // J. Am. Chem. Soc. – 1964. – P. 6036–6048. DOI: 10.1039/JR9640006036.
Carbodicarbenes: Unexpected π-Accepting Ability during Reactivity with Small Molecules /
W.-C. Chen, W.-C. Shih, T. Jurca et al. // J. Am. Chem. Soc. – 2017. – V. 139. – P. 12830–12836. DOI: 10.1021/jacs.7b08031.
The Chemistry of Heteroarylphosphorus Compounds, Part 16.+ An X-Ray Structural Study of (2-Thienyl)bis(2,2′-biphenylylene)phosphorane. A Comparison with Related Methyl and Aryl bis(2,2′-biphenylylene)-spirophosphoranes / D.W. Allen, L.A. March, I.W. Nowell, J.C. Tebby // Z. Naturforsch. B. Chem. Sci. – 1983. – Bd. 38. – P. 465–469. DOI: 10.1515/znb-1983-0413.
Form Formation of a Dicyanotriorganophosphorane from the Reaction of Triphenylphosphane with Phenylselenocyanate / N.A. Barnes, S.M. Godfrey, R.T.A. Halton et al. // Angew. Chem. Int. Ed. – 2006. – V. 45. – P. 1272–1275. DOI: 10.1002/anie.200503335.
5-Organyl-5-phosphaspiro[4.4]nonanes: a contribution to the structural chemistry of spirocyclictetraalkylphosphonium salts and pentaalkylphosphoranes / U. Monkowius, N.W. Mitzel, A. Schier, H. Schmidbaur // J. Am. Chem. Soc. – 2002. – V. 124. – P. 6126–6132. DOI: 10.1021/ja012041g.
Diphosphanylketenimines: new reagents for the synthesis of unique phosphorus heterocycles / J. Ruiz, F.Marquínez, V. Rieraet al. // Chem.-Eur. J. – 2002. – V. 8. – P. 3872–3878. DOI: 10.1002/1521-3765(20020902)8:17.
Muller, G. Crystal and Molecular Structure of P(C6H5)5•0.5 THF / G. Muller, U.J. Bildmann // Z. Naturforsch. B. Chem. Sci. – 2004. – Bd. 59, № 11–12. – P. 1411–1414. DOI: 10.1515/znb-2004-11-1207.
Day, R.O. Molecular structure of the methyl and phenyl derivatives of bis(2,2'-biphenylylene)phosphorene / R.O. Day, S. Husebye, R.R. Holmes // Inorg. Chem. – 1980. – V. 19. – P. 3616–3622. DOI: 10.1021/ic50214a011.
A Facile Access to 1λ5, 3λ5-Benzodiphospholes / H.J. Bestmann, H.P. Oechsner, C. Egerer-Sieber et. al. // Angew. Chem. Int. Ed. – 1995. – V. 34. – P. 2017–2020. DOI: 10.1002/anie.199520171.
Hazell, A. Mono-, di- and poly-nuclear transition-metal complexes of a bis(tridentate) ligand: towards p-phenylenediamine-bridged co-ordination polymers / A. Hazell, C.J. McKenzie, L.P. Nielsen // J. Chem. Soc., Dalton Trans. – 1998. – P. 1751–1756. DOI: 10.1039/A800602D.
Palladium complexes with pyrimidine-functionalized n-heterocyclic carbene ligands: synthesis, structure and catalytic activity / D. Meyer, M.A. Taige, A. Zeller et al. // Organometallics. – 2009. – V. 28, № 7. – P. 2142–2149. DOI: 10.1021/om8009238.
On the electronic impact of abnormal C4-bonding in N-heterocyclic carbene complexes / M. Heckenroth, A. Neels, M.G. Garnier et al. // Chem. Eur. J. – 2009. – V. 15, № 37. – P. 9375–9386. DOI: 10.1002/chem.200900249.
Ссылки
- На текущий момент ссылки отсутствуют.