Синтез и строение комплексов циркония [Ph3PCH=CHMe]2[ZrCl6] и гафния [Ph3PCH2C(O)Me]2[HfCl6]

Павел Валерьевич Андреев, Евгения Вадимовна Лобанова, Павел Дмитриевич Дрожилкин

Аннотация


Взаимодействием хлоридов органилтрифенилфосфония с тетрахлоридами циркония и гафния в растворе ацетонитрила синтезированы комплексы [Ph3PCH=CHMe]2[ZrCl6] (1) и [Ph3PCH2C(O)Me]2[HfCl6] (2). Соединения 1 и 2 охарактеризованы методами ИК-спектроскопии и рентгеноструктурного анализа (РСА). По данным РСА, проведенного при 293 К на автоматическом четырехкружном дифрактометре D8 QuestBruker (МоКα- излучение, λ = 0,71073 Å, графитовый монохроматор), атомы фосфора в катионах комплексов 1 и 2 имеют искаженную тетраэдрическую конфигурацию [C42H40P2Cl6Zr (1), M 910,60; сингония кристаллической структуры триклинная, группа симметрии P ; параметры элементарной ячейки кристаллов: a = 10,189(8), b = 14,428(7), c = 15,229(8) Å;
a = 83,31(2)º, β = 73,77(3)º, g = 87,75(3)º;  V = 2135(2) Å3; размер кристалла 0,72 × 0,36 × 0,3 мм3; интервалы индексов отражений –12 ≤ h ≤ 12, –18 ≤ k ≤ 18, –19 ≤ l ≤ 19; всего отражений 36133; независимых отражений 7367; Rint = 0,0326; GOOF = 1,180; R1 = 0,0907; wR2 = 0,2675; остаточная электронная плотность –0,91/0,827 e/Å3, C42H40P2O1Cl6Hf (2),
M = 1029,87; сингония кристаллической структуры триклинная, группа симметрии P ; параметры ячейки: a = 10,323(3), b = 10,721(3), c = 11,122(3) Å; a = 67,634(13)º,
β = 78,219(17)º, g = 73,041(14)º; V = 1082,7(5) Å3; размер кристалла 0,57 × 0,39 × 0,22 мм3; интервалы индексов отражений –19 ≤ h ≤ 19, –20 ≤ k ≤ 20, –21 ≤ l ≤ 21; всего отражений 118390; независимых отражений 16166; Rint = 0,0486; GOOF 1,009; R1 = 0,0447;
wR2 = 0,0772; остаточная электронная плотность –1,013/0,910 e/Å3]. Валентные углы СРС составляют 106,72(17)°–113,51(17)° для 1, 105,85(15)°–110,97(15)° для 2, длины связей P-С близки между собой 1,771(6)–1,801(6) Å в 1; 1,790(2)–1,821(2) Å в 2. В кристалле 1 в октаэдрических анионах [ZrCl6]2–транс-углы ClZrCl равны 180,0º, длины связей Zr-Cl 2,462(3)–2,476(2) Å. Анион [HfCl6]2– комплекса 2 также имеет форму слабо искаженного октаэдра, транс-углы ClHfCl равны 180,0º, длины связей Hf–Cl находятся в интервале 2,4513(10)–2,462(2) Å. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 1913593 для 1, № 1919938 для 2, deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Ключевые слова


ацетонилтрифенилфосфоний хлорид; аллилтрифенилфосфоний хлорид; ацетонитрил; тетрахлорид циркония; тетрахлорид гафния; комплекс, рентгеноструктурный анализ

Полный текст:

PDF

Литература


Prakasam M., Locs J., Salma-Ancane K., Loca D., Largeteau A., Berzina-Cimdina L. Biodegradable Materials and Metallic Implants – A Review. J. Funct. Biomater, 2017, vol. 8, no. 4, pp. 44–59. DOI: 10.3390/jfb8040044

Kaminsky W., Hopf A., Piel C. Cs-symmetric hafnocene complexes for synthesis of syndiotactic polypropene. J. Organomet. Chem., 2003, vol. 684, no. 1–2, pp. 200–205. DOI: 10.1016/S0022-328X(03)00731-9.

Gunasekara T., Preston A.Z., Zeng M., Abu-Omar M.M. Highly Regioselective α-Olefin Dimeri-zation Using Zirconium and Hafnium Amine Bis(phenolate) Complexes. Organometallics, 2017,

vol. 36, no. 15, pp. 2934–2939. DOI: 10.1021/acs.organomet.7b00359.

Zherikova K.V., Morozova N.B. Crystal structures of hafnium(IV) and zirconium(IV) complexes with β-diketones. J. Struct. Chem., 2012, vol. 53, no. 4, pp. 761–767.

Burlakov V.V., Beweries T., Bogdanov V.S., Arhdt P., Baumann W., Pefeovskii P.V., Spannenberg A., Lysenko V., Shur V.B., Rosenthal U. Synthesis and Isolation of Di-n-butylhafnocene and Its Application as a Versatile Starting Material for the Synthesis of New Hafnacycles. Organome-tallics, 2009, vol. 28, pp. 2864–2870. DOI: 10.1021/om900122w.

Burlakov V.V., Beweries T., Bogdanov V.S., Arhdt P., Baumann W., Spannenberg A., Shur V.B., Rosenthal U. Reactions of the Five-Membered Hafnacyclocumulene Cp2Hf(η4-t-Bu-C4-t-Bu) with the Lewis Acids Tris(pentafiuorophenyl)borane and Diisobutylaluminium Hydride. Organometallics, 2010, vol. 29, pp. 2367–2371. DOI: 10.1021/om100208g.

Xu S., Negishi E. Zirconium-Catalyzed Asymmetric Carboalumination of Unactivated Terminal Alkenes. Acc. Chem. Res., 2016, vol. 49, no. 10, pp. 2158–2168. DOI: 10.1021/acs.accounts.6b00338.

Coates G., Waymouth R. Enantioselective cyclopolymerization of 1,5-hexadiene catalyzed by chiral zirconocenes: a novel strategy for the synthesis of optically active polymers with chirality in the main chain. J. Am. Chem. Soc., 1993, vol. 115, no. 1, pp. 91–98. DOI: 10.1021/ja00054a014.

Kesti M., Coates G., Waymouth R. Homogeneous Ziegler-Natta polymerization of functionalized monomers catalyzed by cationic Group IV metallocenes. J. Am. Chem. Soc., 1992, vol. 114, no. 24,

pp. 9679–9680. DOI: 10.1021/ja00050a069.

Ji P., Feng X., Veroneau S.S., Song Y., Lin W. Trivalent Zirconium and Hafnium Metal–Organic Frameworks for Catalytic 1,4-Dearomative Additions of Pyridines and Quinolines. J. Am. Chem. Soc., 2017, vol. 139, no. 44, pp. 15600–15603. DOI: 10.1021/jacs.7b09093

Cueny E.S., Landis C.R. Zinc-Mediated Chain Transfer from Hafnium to Aluminum in the Hafnium-Pyridyl Amido-Catalyzed Polymerization of 1-Octene Revealed by Job Plot Analysis. Organometallics, 2019, vol. 38, no. 4, pp. 926–932. DOI: 10.1021/acs.organomet.8b00900

Johnson H.C., Cueny E.S., Landis C.R. Chain Transfer with Dialkyl Zinc During Hafnium–Pyridyl Amido-Catalyzed Polymerization of 1-Octene: Relative Rates, Reversibility, and Kinetic Mod-els. ACS Catalysis, 2018, vol. 8, no. 5, pp. 4178–4188. DOI: 10.1021/acscatal.8b00524.

Matsumoto K., Sandhya K.S., Takayanagi M., Koga N., Nagaoka M. An Active Site Opening Mechanism in a (Pyridylamide)hafnium(IV) Ion Pair Catalyst: An Associative Mechanism. Organome-tallics, 2016, vol. 35, no. 24, pp. 4099–4105. DOI: 10.1021/acs.organomet.6b00804.

Matsumoto K., Takayanagi M., Sankaran S.K., Koga N., Nagaoka M. Role of the Counteranion in the Reaction Mechanism of Propylene Polymerization Catalyzed by a (Pyridylamido)hafnium(IV) Complex. Organometallics, 2018, vol. 37, no. 3, pp. 343–349. DOI: 10.1021/acs.organomet.7b00767.

Miller S.A., Bercaw J.E. Highly Stereoregular Syndiotactic Polypropylene Formation with Metallocene Catalysts via Influence of Distal Ligand Substituents. Organometallics, 2004, vol. 23, no. 8, pp. 1777–1789. DOI:10.1021/om030333f

Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick G.M. SHELXT – Integrated space-group and crystal structure determination. Acta Cryst., 2015, vol. A71, pp. 3–8.

Sheldrick G.M. Crystal structure refinement with SHELX. Acta Cryst., 2015, vol. C71, pp. 3–8.

Hübschle C.B., Sheldrick G.M. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Cryst., 2011, vol. 44, pp. 1281–1284.

Buscaglioni I., Stables C.M., Sutcliffe H. The chemistry of polyhalozirconates. Part 3. The preparation of phosphonium hexachlorozirconates. Inorg. Chim. Acta, 1988, vol. 146, iss. 33, pp. 33–35.

DOI: 10.1016/S0020-1693(00)80024-9

Sharutin V.V., Sharutina O.K., Tarasova N.M., El′tsov O.S. Synthesis and structures of zirconium complexes [Et2H2N]+2[ZrCl6]2–, [Me3NCH2Ph]+2[ZrCl6]2–•MeCN, [Ph3PC6H4(CHPh2-4)]+2[ZrCl6]2–•2MeCN, and [Ph4Sb]+2[ZrCl6]2–. Russian Chemical Bulletin, 2019, vol. 68, no. 1, pp. 24–31.

DOI: 10.1007/s11172-019-2411-9

Sharutin V.V., Sharutina O.K., Tarasova N.M., Lobanova E.V., Andreev P.V. Synthesis and structure of triphenylbut-2-enyl- and triphenylmetoxymethylphosphonium hexachlorozirconates. Bulletin of the Institutions of Higher Education, Chemistry and Chemical Technology, 2019, vol. 62, no. 6, pp. 36–40. DOI: 10.6060/ivkkt.20196206.5885


Ссылки

  • На текущий момент ссылки отсутствуют.