Synthesis and Structure of Zirconium [Ph3PCH=CHME]2[ZrCl6] and Hafnium [Ph3PCH2C(O)Me]2[HfCl6] Complexes

P. V. Andreev, E. V. Lobanova, P. D. Drozhilkin

Abstract


The interaction of zirconium (IV) chloride and hafnium (IV) cloride with tetraorganylphosphonium chlorides in solutions of acetonitrile synthesized the following complexes: [Ph3PCH=CHCH3][ZrCl6] (1), [Ph3PCH2C(O)CH3][HfCl6] (2). The structures 1 and 2 were determined by XRDA and IR. The X-ray diffraction patterns of crystals 1 and 2 were obtained at 293 K on an automatic diffractometer D8 Quest Broker (MoKα radiation, λ = 0.71073 Å, graphite monochromator) the phosphorus atoms of complexes 1 and 2 have a distorted tetrahedral configuration in the cations. [C42H40P2Cl6Zr (1), M = 910.60; the triclinic syngony, the symmetry group P ; cell parameters: a = 10.189(8), b = 14.428(7), c = 15.229(8) Å; a = 83.31(2) degrees, β = 73.77(3) degrees, g = 87.75(3) degrees; V = 2135(2) Å3; the crystal size is 0.72 × 0.36 × 0.3 mm; intervals of reflection indexes –12 ≤ h ≤ 12, –18 ≤ k ≤ 18, –19 ≤ l ≤ 19; total reflections 36133; independent disclosures 7367; Rint = 0.0326; GOOF = 1.180; R1 = 0.0907; wR2 = 0.2675; residual electron density ­­–0.91/ 0.827  e/Å3, C42H40P2Cl6O1Hf (2), M = 1029.87; the triclinic syngony, the symmetry group P ; cell parameters: a = 10.323(3), b = 10.721(3), c = 11.122(3) Å; a = 67.634(13) degrees, β = 78.219(17) degrees, g = 73.041(14) degrees; V = 1082.7(5) Å3; the crystal size is 0.57 × 0.39 × 0.22  mm; intervals of reflection indexes –19 ≤ h ≤ 19, –20 ≤ k ≤ 20, –21 ≤ l ≤ 21; total reflections 118390; independent disclosures 16166; Rint = 0.0486; GOOF 1.009; R1 = 0.0447; wR2 = 0.0772; residual electron density ­–1,013/0,910 e/Å3]. The СРС valence angles are 107.95(16)°–110.94(15)° and 106.72(17)°–113.51(17)° for 1, 105.85(15)°–110.97(15)°  for 2, distance P-С 1.771(6)–1.801(6) Å и 1.781(6)–1.801(6) Å in 1; 1.790(2)–1.821(2) Å in 2. In octahedral anions [ZrCl6]2− and [HfCl6]2– trans-angles ClZrCl and ClHfCl equal 180.0º, distance 2.462(3)–2.476(3) Å и 2.462(2)– 2.468(2) Å in a crystal solvate in 1, 2.4513(10)–2.462(2) Å in 2. Complete tables of coordinates of atoms, bond lengths and valence angles are deposited at the Cambridge Structural Data (No. 1913593 for 1, 1919938 for 2, deposit@ccdc.cam.ac.uk; http://www.ccdc. cam.ac.uk).

Keywords


acetonyltriphenylphosphonium chloride; allyltriphenylphosphonium chloride; acetonitrile; zirconium (IV) chloride; hafnium (IV) chloride; X-ray diffraction analysis

References


Prakasam M., Locs J., Salma-Ancane K., Loca D., Largeteau A., Berzina-Cimdina L. Biodegradable Materials and Metallic Implants – A Review. J. Funct. Biomater, 2017, vol. 8, no. 4, pp. 44–59. DOI: 10.3390/jfb8040044

Kaminsky W., Hopf A., Piel C. Cs-symmetric hafnocene complexes for synthesis of syndiotactic polypropene. J. Organomet. Chem., 2003, vol. 684, no. 1–2, pp. 200–205. DOI: 10.1016/S0022-328X(03)00731-9.

Gunasekara T., Preston A.Z., Zeng M., Abu-Omar M.M. Highly Regioselective α-Olefin Dimeri-zation Using Zirconium and Hafnium Amine Bis(phenolate) Complexes. Organometallics, 2017,

vol. 36, no. 15, pp. 2934–2939. DOI: 10.1021/acs.organomet.7b00359.

Zherikova K.V., Morozova N.B. Crystal structures of hafnium(IV) and zirconium(IV) complexes with β-diketones. J. Struct. Chem., 2012, vol. 53, no. 4, pp. 761–767.

Burlakov V.V., Beweries T., Bogdanov V.S., Arhdt P., Baumann W., Pefeovskii P.V., Spannenberg A., Lysenko V., Shur V.B., Rosenthal U. Synthesis and Isolation of Di-n-butylhafnocene and Its Application as a Versatile Starting Material for the Synthesis of New Hafnacycles. Organome-tallics, 2009, vol. 28, pp. 2864–2870. DOI: 10.1021/om900122w.

Burlakov V.V., Beweries T., Bogdanov V.S., Arhdt P., Baumann W., Spannenberg A., Shur V.B., Rosenthal U. Reactions of the Five-Membered Hafnacyclocumulene Cp2Hf(η4-t-Bu-C4-t-Bu) with the Lewis Acids Tris(pentafiuorophenyl)borane and Diisobutylaluminium Hydride. Organometallics, 2010, vol. 29, pp. 2367–2371. DOI: 10.1021/om100208g.

Xu S., Negishi E. Zirconium-Catalyzed Asymmetric Carboalumination of Unactivated Terminal Alkenes. Acc. Chem. Res., 2016, vol. 49, no. 10, pp. 2158–2168. DOI: 10.1021/acs.accounts.6b00338.

Coates G., Waymouth R. Enantioselective cyclopolymerization of 1,5-hexadiene catalyzed by chiral zirconocenes: a novel strategy for the synthesis of optically active polymers with chirality in the main chain. J. Am. Chem. Soc., 1993, vol. 115, no. 1, pp. 91–98. DOI: 10.1021/ja00054a014.

Kesti M., Coates G., Waymouth R. Homogeneous Ziegler-Natta polymerization of functionalized monomers catalyzed by cationic Group IV metallocenes. J. Am. Chem. Soc., 1992, vol. 114, no. 24,

pp. 9679–9680. DOI: 10.1021/ja00050a069.

Ji P., Feng X., Veroneau S.S., Song Y., Lin W. Trivalent Zirconium and Hafnium Metal–Organic Frameworks for Catalytic 1,4-Dearomative Additions of Pyridines and Quinolines. J. Am. Chem. Soc., 2017, vol. 139, no. 44, pp. 15600–15603. DOI: 10.1021/jacs.7b09093

Cueny E.S., Landis C.R. Zinc-Mediated Chain Transfer from Hafnium to Aluminum in the Hafnium-Pyridyl Amido-Catalyzed Polymerization of 1-Octene Revealed by Job Plot Analysis. Organometallics, 2019, vol. 38, no. 4, pp. 926–932. DOI: 10.1021/acs.organomet.8b00900

Johnson H.C., Cueny E.S., Landis C.R. Chain Transfer with Dialkyl Zinc During Hafnium–Pyridyl Amido-Catalyzed Polymerization of 1-Octene: Relative Rates, Reversibility, and Kinetic Mod-els. ACS Catalysis, 2018, vol. 8, no. 5, pp. 4178–4188. DOI: 10.1021/acscatal.8b00524.

Matsumoto K., Sandhya K.S., Takayanagi M., Koga N., Nagaoka M. An Active Site Opening Mechanism in a (Pyridylamide)hafnium(IV) Ion Pair Catalyst: An Associative Mechanism. Organome-tallics, 2016, vol. 35, no. 24, pp. 4099–4105. DOI: 10.1021/acs.organomet.6b00804.

Matsumoto K., Takayanagi M., Sankaran S.K., Koga N., Nagaoka M. Role of the Counteranion in the Reaction Mechanism of Propylene Polymerization Catalyzed by a (Pyridylamido)hafnium(IV) Complex. Organometallics, 2018, vol. 37, no. 3, pp. 343–349. DOI: 10.1021/acs.organomet.7b00767.

Miller S.A., Bercaw J.E. Highly Stereoregular Syndiotactic Polypropylene Formation with Metallocene Catalysts via Influence of Distal Ligand Substituents. Organometallics, 2004, vol. 23, no. 8, pp. 1777–1789. DOI:10.1021/om030333f

Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick G.M. SHELXT – Integrated space-group and crystal structure determination. Acta Cryst., 2015, vol. A71, pp. 3–8.

Sheldrick G.M. Crystal structure refinement with SHELX. Acta Cryst., 2015, vol. C71, pp. 3–8.

Hübschle C.B., Sheldrick G.M. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Cryst., 2011, vol. 44, pp. 1281–1284.

Buscaglioni I., Stables C.M., Sutcliffe H. The chemistry of polyhalozirconates. Part 3. The preparation of phosphonium hexachlorozirconates. Inorg. Chim. Acta, 1988, vol. 146, iss. 33, pp. 33–35.

DOI: 10.1016/S0020-1693(00)80024-9

Sharutin V.V., Sharutina O.K., Tarasova N.M., El′tsov O.S. Synthesis and structures of zirconium complexes [Et2H2N]+2[ZrCl6]2–, [Me3NCH2Ph]+2[ZrCl6]2–•MeCN, [Ph3PC6H4(CHPh2-4)]+2[ZrCl6]2–•2MeCN, and [Ph4Sb]+2[ZrCl6]2–. Russian Chemical Bulletin, 2019, vol. 68, no. 1, pp. 24–31.

DOI: 10.1007/s11172-019-2411-9

Sharutin V.V., Sharutina O.K., Tarasova N.M., Lobanova E.V., Andreev P.V. Synthesis and structure of triphenylbut-2-enyl- and triphenylmetoxymethylphosphonium hexachlorozirconates. Bulletin of the Institutions of Higher Education, Chemistry and Chemical Technology, 2019, vol. 62, no. 6, pp. 36–40. DOI: 10.6060/ivkkt.20196206.5885


Refbacks

  • There are currently no refbacks.