Синтез и строение новых дигалогендицианоауратных комплексов

Дмитрий Павлович Шевченко, Анастасия Евгеньевна Хабина, Владислав Станиславович Сенчурин

Аннотация


Взаимодействием галогенидов тетраорганилфосфония с дихлоро-, дибромо- и дииододицианоауратом калия в воде с последующей перекристаллизацией из ацетонитрила синтезированы ионные комплексы золота(III) [Me4P][Au(CN)2Cl2] (1), [Ph3PR][Au(CN)2Hal2] (Hal = Cl, R = (CH2)6Me (2), (CH2)2C(O)OH (3); Hal = Br, R = CH2CN (4); Hal = I, R = CH2CN (5)) и [Ph3PCH=CHPPh3][Au(CN)2Cl2]2 (6). Аналогичным путем взаимодействием хлорида тетрафенилстибония с дихлородицианоауратом калия получен комплекс [Ph4Sb][Au(CN)2Cl2] (7). Строение комплексов 3, 57 установлено методом рентгеноструктурного анализа (РСА). По данным РСА, атомы фосфора и сурьмы в 3, 57 имеют искаженную тетраэдрическую координацию (углы СPС 107,5(2)-111,8(3)° (3), 106,0(3)-111,5(3)° (5), 106,7(4)-111,8(4)° (6), CSbC 100,5(7)-114,6(5)° (7); длины связей P-С 1,788(5)-1,807(5) Å (3), 1,765(6)-1,821(6) Å (5), 1,781(8)-1,810(8) Å (6); Sb–C 2,070(11)-2,121(12) Å (7)). Атомы золота в анионах [Au(CN)2Hal2]- имеют малоискаженную плоскоквадратную координацию (транс-углы HalAuHal и CAuC близки к 180°; цис-углы CAuHal изменяются в интервале 88,05–92,48°), длины связей Au–Hal составляют: Au–Cl 2,328(3) Å (3), 2,393(2), 2,411(2) Å (6), 2,4223(12) Å (7); Au–I 2,609(3), 2,598(3) Å (5), Au–C – 1,981(7) Å (3), 1,996(7), 2,006(8) Å (5), 1,978(12), 2,001(13) Å (6), 2,040(15) (7). Структурная организация в кристаллах 3, 57 обусловлена нековалентными взаимодействиями различной природы: С–H∙∙∙N≡C 2,55–2,74 Å (3, 57), O–H∙∙∙N≡C 2,03 Å, С–H∙∙∙O=C 2,52 Å, C–H∙∙∙Cl–Au 2,88–2,93 Å (3), Au–I∙∙∙I–Au 3,925(4) Å (5), C–H∙∙∙Cl–Au 2,91 Å (6).


Ключевые слова


дигалогендицианоаурат калия; галогениды тетраорганилфосфония; хлорид тетрафенилстибония; синтез; строение; рентгеноструктурный анализ

Полный текст:

PDF

Литература


Katz M.J., Ramnial T., Yu H., Leznoff D. Polymorphism of Zn[Au(CN)2]2 and Its Luminescent Sensory Response to NH3 Vapor. J. Am. Chem. Soc., 2008, vol. 130, no. 32, pp. 10662–10673.

DOI: 10.1021/ja801773p.

Nicholas A.D., Bullard R.M., Pike R.D., Patterson H.H. Photophysical Investigation of Sil-ver/Gold Dicyanometallates and Tetramethylammonium Networks. An Experimental and Theoretical Investigation. Eur. J. Inorg. Chem. 2018, vol. 7, pp. 956–962. DOI: 10.1002/ejic.201801407.

Ovens J.S., Christensen P.R., Leznoff D.B. Designing Tunable White-Light Emission from an Aurophilic CuI/AuI Coordination Polymer with Thioether Ligands. Chem. – A Eur. J. 2016, vol. 22, no. 24, pp. 8234–8239. DOI: 10.1002/chem.201505075.

Roberts R.J., Le D., Leznoff D.B. Color-Tunable and White-Light Luminescence in Lanthanide–Dicyanoaurate Coordination Polymers. Inorg. Chem., 2017, vol. 56, no. 14, pp. 7948–7959.

DOI: 10.1021/acs.inorgchem.7b00735.

Belyaev A., Eskelinen T., Dau T.M., Ershova Y.Y., Tunik S.P., Melnikov A.S., Hirva P., Koshevoy I.O. Cyanide-Assembled d10 Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid-State Luminescence. Chem. – A Eur. J. 2017, vol. 24, no. 6, pp. 1404–1415. DOI: 10.1002/chem.201704642.

Kumar K., Stefańczyk O., Chorazy S., Nakabayashi K., Sieklucka B., Ohkoshi S. Effect of Noble Metals on Luminescence and Single-Molecule Magnet Behavior in the Cyanido-Bridged Ln–Ag and Ln–Au (Ln = Dy, Yb, Er) Complexes. Inorg. Chem., 2019, vol. 58, no. 9, pp. 5677–5687. DOI: 10.1021/acs.inorgchem.8b03634.

Mizuno Y., Okubo M., Kagesawa K., Asakura D., Kudo T., Zhou H., Oh-Ishi K., Okazawa A., Kojima N. Precise Electrochemical Control of Ferromagnetism in a Cyanide-Bridged Bimetallic Coor-dination Polymer. Inorg. Chem., 2012, vol. 51, no. 19, pp. 10311–10316. DOI: 10.1021/ic301361h.

Gros C.R., Peprah M.K., Felts A.C., Brinzari T.V., Risset O.N., Cain J.M., Ferreira C.F., Meisel M.W., Talham D.R. Synergistic Photomagnetic Effects in Coordination Polymer Heterostructure Particles of Hofmann-like Fe(4-phenylpyridine)2[Ni(CN)4]•0.5H2O and K0.4Ni[Cr(CN)6]0.8•nH2O. Dalton Trans., 2016, vol. 45, no. 42, pp. 16624–16634. DOI: 10.1039/c6dt02353c.

Lefebvre J., Callaghan F., Katz M.J., Sonier J.E., Leznoff D.B. A New Basic Motif in Cyanometallate Coordination Polymers: Structure and Magnetic Behavior of M(μ-OH2)2[Au(CN)2]2 (M = Cu, Ni). Chem.– Eur. J., 2006, vol. 12, no. 26, pp. 6748–6761. DOI: 10.1002/chem.200600303.

Lefebvre J., Tyagi P., Trudel S., Pacradouni V., Kaiser C., Sonier J.E., Leznoff D.B. Magnetic Frustration and Spin Disorder in Isostructural M(μ-OH2)2[Au(CN)2]2 (M = Mn, Fe, Co) Coordination Polymers Containing Double Aqua-Bridged Chains: SQUID and μSR Studies. Inorg. Chem., 2009, vol. 48, no. 1, pp. 55–67. DOI: 10.1021/ic801094m.

Geisheimer A.R., Huang W., Pacradouni V., Sabok-Sayr S.A., Sonier J.E., Leznoff D.B. Magnetic Properties of Isostructural M(H2O)4[Au(CN)4]2-based Coordination Polymers (M = Mn, Co, Ni, Cu, Zn) by SQUID and μsR Studies. Dalton Trans., 2011, vol. 40, no. 29 pp. 7505–7516.

DOI: 10.1039/c0dt01546f.

Lefebvre J., Chartrand D., Leznoff D.B. Synthesis, Structure and Magnetic Properties of 2-D and 3-D [cation]{M[Au(CN)2]3} (M = Ni, Co) Coordination Polymers. Polyhedron. 2007, vol. 26, no. 9–11, pp. 2189–2199. DOI: 10.1016/j.poly.2006.10.045.

Miller J.S. Organometallic- and Organic-based Magnets: New Chemistry and New Materials for the New Millennium. Inorg. Chem., 2000, vol. 39, no. 20, pp. 4392–4408. DOI: 10.1021/ic000540x.

Zhang J.-P., Liao P.-Q., Zhou H.-L., Lin R.-B., Chen X.-M. Single-crystal X-ray Diffraction Studies on Structural Transformations of Porous Coordination Polymers. Chem. Soc. Rev., 2014, vol. 43, no. 16, pp. 5789–5814. DOI: 10.1039/c4cs00129j.

Ovens J.S., Leznoff D.B. Thermal Expansion Behavior of M[AuX2(CN)2]-Based Coordination Polymers (M = Ag, Cu; X = CN, Cl, Br). Inorg. Chem., 2017, vol. 56, no 13, pp. 7332–7343. DOI: 10.1021/acs.inorgchem.6b03153.

Ovens J.S., Leznoff D.B. Probing Halogen⋯Halogen Interactions via Thermal Expansion Analysis. CrystEngComm, 2018, vol. 20, no. 13, pp. 1769–1773. DOI: 10.1039/c7ce02167d.

Lefebvre J., Batchelor R.J., Leznoff D.B. Cu[Au(CN)2]2(DMSO)2: Golden Polymorphs that Exhibit Vapochromic Behavior. J. Am. Chem. Soc., 2004, vol. 126, no. 49, pp. 16117–16125. DOI: 10.1021/ja049069n.

Lefebvre J., Korčok J.L., Katz M.J., Leznoff D.B. Vapochromic Behaviour of M[Au(CN)2]2 – based coordination polymers (M = Co, Ni). Sensors. 2012, vol. 12, no. 3, pp. 3669–3692. DOI: 10.3390/s120303669.

Varju B.R., Ovens J.S., Leznoff D.B. Mixed Cu(I)/Au(I) Coordination Polymers as Reversible Turn-on Vapoluminescent Sensors for Volatile Thioethers. Chem. Comm., 2017, vol. 53, no. 48, pp. 6500–6503. DOI: 10.1039/c7cc03428h.

Ovens J.S., Leznoff D.B. Raman Detected Sensing of Volatile Organic Compounds by Vapochromic Cu[AuX2(CN)2]2 (X = Cl, Br) Coordination Polymer Materials. Chem. Mater. 2015, vol. 27, no. 5, pp. 1465–1478. DOI: 10.1021/cm502998w.

Ovens J.S., Geisheimer A.R., Bokov A.A., Ye Z.-G., Leznoff D.B. The Use of Polarizable [AuX2(CN)2]− (X = Br, I) Building Blocks Toward the Formation of Birefringent Coordination Poly-mers. Inorg. Chem., 2010, vol. 49, no. 20, pp. 9609–9616. DOI: 10.1021/ic101357y.

Guan D., Thompson J.R., Leznoff D.B. Emissive and Birefringent Hg(CN)2-based Coordination Polymer Materials with Very Distorted Coordination Geometries. Can. J. Chem., 2018, vol. 96, no. 2, pp. 226–234. DOI: 10.1139/cjc-2017-0589.

Katz M.J., Leznoff D.B. Highly Birefringent Cyanoaurate Coordination Polymers: The Effect of Polarizable C-X Bonds (X = Cl, Br). J. Am. Chem. Soc., 2009, vol. 131, no. 51, pp. 18435–18444. DOI: 10.1021/ja907519c.

Thompson J.R., Goodman-Rendall K.A.S., Leznoff D.B. Birefringent, Emissive Cyanometallate-based Coordination Polymer Materials Containing Group(II) Metal-terpyridine Building Blocks. Polyhedron. 2016, no. 108, pp. 93–99. DOI: 10.1016/j.poly.2015.12.026.

Katz M.J., Kaluarachchi H., Batchelor R.J., Bokov A.A., Ye Z.-G., Leznoff D.B. Highly Birefringent Materials Designed Using Coordination Polymer Synthetic Methodology Angew. Chem., Int. Ed., 2007, vol. 46, no. 46, pp. 8804–8807. DOI: 10.1002/anie.200702885.

Thompson J.R., Roberts R.J., Williams V.E., Leznoff D.B. Birefringent, Emissive Coordination Polymers Incorporating Bis(benzimidazole)pyridine as an Anisotropic Building Block. Cryst. Eng. Comm., 2013, vol. 15, no. 45, pp. 9387–9393. DOI: 10.1039/c3ce41556b.

Thompson J.R., Katz M.J., Williams V.E., Leznoff D.B. Structural Design Parameters for Highly Birefringent Coordination Polymers. Inorg. Chem., 2015, vol. 54, no. 13, pp. 6462–6471. DOI: 10.1021/acs.inorgchem.5b00749.

Christopheson J.-C., Potts K.P., Bushuyev O.S., Topić F, Huskić I, Rissanen K., Barret C.J.,

Friščić T. Assembly and Dichroism of a Four-component Halogen-bonded Metal-organic Cocrystal Salt Solvate Involving Dicyanoaurate(I) Acceptors. Faraday Discuss. 2017, vol. 203, pp. 441–457. DOI: 10.1039/c7fd00114b.

Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Dis-playing Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst., 2009, vol. 42, pp. 339–341. DOI: 10.1107/S0021889808042726.

Sharutin V.V., Senchurin V.S., Sharutina O.K., Pakusina A.P., Fastovets O.A. Synthesis and Structure of Gold and Copper Complexes: [Ph3PCH2Ph]+[AuCl4]–, [NH(C2H4OH)3]+[AuCl4]– • H2O и [Ph3EtP]+2[Cu2Cl6]2–. Russ. J. Inorg. Chem., 2010, vol. 55, no. 9, pp. 1415–1420. DOI: 10.1134/S0036023610090135.

Sharutin V.V., Sharutina O.K., Senchurin V.S. Gold Complexes [Ph3PCH2CH=CHCH2PPh3]2+[AuCl4]–2 and [Ph3PCH2CH2COOH]+[AuCl4]–: Synthesis and Structure. Russ. J. Inorg. Chem., 2015, vol. 60, no. 8, pp. 942–946. DOI: 10.1134/S0036023615080173.

Senchurin V.S. Gold Complexes [Ph4Bi][Au(CN)2Hal2] (Hal = Cl, Br). Synthesis and Structure. Bulletin of the South Ural State University. Ser. Chemistry. 2019, vol. 11, no. 3. pp. 50–58. (in Russ.). DOI: 10.14529/chem190306.

Ovens J.S., Leznoff D.B. Thermally Triggered Reductive Elimination of Bromine from Au(III) as a Path to Au(I)-based Coordination Polymers. Dalton Trans., 2011, vol. 40, pp. 4140–4146. DOI: 10.1039/C0DT01772H.

Marangoni G., Pitteri B., Bertolasi V., Ferretti V., Gilli G. Crystal Structures and Properties of [Au(phen){(CN)0.92Br0.08}2]Br and [Au(phen)(CN){(CN)0.82Br0.18}]•0.5trans-[Au(CN)2Br2]•0.5Br•phen (phen = 1,10-phenanthroline) Obtained by Disproportionation of Five-co-ordinate Bromodicyano(1,10-phenanthroline)gold(III). Two Examples of Secondary Co-ordination and CN/Br Disorder in Square-planar Gold(III) Complexes. J. Chem. Soc., Dalton Trans., 1987, pp. 2235–2240. DOI: 10.1039/DT9870002235.

Ovens J.S., Truong K.N., Leznoff D.B. Targeting [AuCl2(CN)2]− Units as Halophilic Building Blocks in Coordination Polymers. Inorg. Chim. Acta. 2013, vol. 403, pp. 127–135. DOI: 10.1016/j.ica.2013.02.011.

Ovens J.S., Truong K.N., Leznoff D.B. Structural Organization and Dimensionality at the Hands of Weak Intermolecular Au⋯Au, Au⋯X and X⋯X (X = Cl, Br, I) Interactions. Dalton Trans., 2012, vol. 41, pp. 1345–1351. DOI: 10.1039/C1DT11741F.

Pitteri B., Bortoluzzi M., Bertolasi V. Chelate Polypyridine Ligand Rearrangement in Au(III) Complexes. Transition Met. Chem., 2008, vol. 33, no. 5, pp. 649–654. DOI: 10.1007/s11243-008-9092-9.

Cordero B., Gómez V., Platero-Prats A.E., Revés M., Echeverría J., Cremades E., Barragána F., Alvarez S. Covalent Radii Revisited. Dalton Trans., 2008, iss. 21, pp. 2832–2838. DOI: 10.1039/B801115J.

Mantina M., Chamberlin A.C., Valero R., Cramer C.J., Truhlar D.G. Consistent Van der Waals Radii for the Whole Main Group J. Phys. Chem. A., 2009, vol. 113, no. 19, pp. 5806–5812. DOI: 10.1021/jp8111556.

Sakurai T., Sundaralingam M., Jeffrey G.A. A Nuclear Quadrupole Resonance and X-ray Study of the Crystal Structure of 2,5-Dichloroaniline. Acta Crystallogr. 1963, vol. 16, no. 5, pp. 354–363. DOI: 10.1107/S0365110X63000979.




DOI: http://dx.doi.org/10.14529/chem200103

Ссылки

  • На текущий момент ссылки отсутствуют.