Sinthesis and Molecular Structure of Novel Dihalogeno-dicyanoaurate Complexes
Abstract
Interaction of tetraorganylphosphonium halides with potassium dichloro-, dibromo- and diiododicyanoaurate in water followed by recrystallization from acetonitrile has been used to synthesize gold(III) ionic complexes [Me4P][Au(CN)2Cl2] (1), [Ph3PR][Au(CN)2Hal2] (Hal = Cl,
R = (CH2)6Me (2), (CH2)2C(O)OH (3); Hal = Br, R = CH2CN (4); Hal = I, R = CH2CN (5)) and [Ph3PCH=CHPPh3][Au(CN)2Cl2]2 (6). In a similar way complex [Ph4Sb][Au(CN)2Cl2] (7) has been obtained by the interaction of tetraphenylantimony chloride with potassium dichlorodicyanoaurate. Complexes 3, 5–7 have been structurally characterized by the X-ray analysis method. According to the X-ray data phosphorus and antimony atoms in crystals 3, 5–7 have a slightly distorted tetrahedral coordination (the CPC bond angles are 107.5(2)-111.8(3)° (3), 106.0(3)-111.5(3)° (5), 106.7(4)-111.8(4)° (6), the CSbC bond angles are 100.5(7)-114.6(5)° (7); the P–C bond lengths are 1.788(5)-1.807(5) Å (3), 1.765(6)-1.821(6) Å (5), 1.781(8)-1.810(8) Å (6); the Sb–C bond lengths are 2.070(11)-2.121(12) Å (7)). Gold atoms in [Au(CN)2Hal2]- anions have a slightly distorted square planar coordination (the HalAuHal and CAuC trans-angles are quite close to 180°; the CAuHal cis-angles vary from 88.05° to 92.48°), the Au–Hal bond lengths are 2.328(3) Å (3), 2.393(2), 2.411(2) Å (6), 2.4223(12) Å (7) for Au–Cl and 2.609(3), 2.598(3) Å (5) for Au–I; the Au–C bond lengths are 1.981(7) Å (3), 1.996(7), 2.006(8) Å (5), 1.978(12), 2.001(13) Å (6), 2.040(15) (7). In crystal 5 two types of crystallographically independent centrosymmetric [Au(CN)2I2]- anions are observed. The structural organization of complexes 3, 5–7 is caused by the different noncovalent interactions: С–H∙∙∙N≡C 2.55–2.74 Å (3, 5–7), O–H∙∙∙N≡C 2.03 Å, С–H∙∙∙O=C 2.52 Å, C–H∙∙∙Cl–Au 2.88–2.93 Å (3), Au–I∙∙∙I–Au 3.925(4) Å (5), C–H∙∙∙Cl–Au 2.91 Å (6).
Keywords
Full Text:
PDF (Русский)References
Katz M.J., Ramnial T., Yu H., Leznoff D. Polymorphism of Zn[Au(CN)2]2 and Its Luminescent Sensory Response to NH3 Vapor. J. Am. Chem. Soc., 2008, vol. 130, no. 32, pp. 10662–10673.
DOI: 10.1021/ja801773p.
Nicholas A.D., Bullard R.M., Pike R.D., Patterson H.H. Photophysical Investigation of Sil-ver/Gold Dicyanometallates and Tetramethylammonium Networks. An Experimental and Theoretical Investigation. Eur. J. Inorg. Chem. 2018, vol. 7, pp. 956–962. DOI: 10.1002/ejic.201801407.
Ovens J.S., Christensen P.R., Leznoff D.B. Designing Tunable White-Light Emission from an Aurophilic CuI/AuI Coordination Polymer with Thioether Ligands. Chem. – A Eur. J. 2016, vol. 22, no. 24, pp. 8234–8239. DOI: 10.1002/chem.201505075.
Roberts R.J., Le D., Leznoff D.B. Color-Tunable and White-Light Luminescence in Lanthanide–Dicyanoaurate Coordination Polymers. Inorg. Chem., 2017, vol. 56, no. 14, pp. 7948–7959.
DOI: 10.1021/acs.inorgchem.7b00735.
Belyaev A., Eskelinen T., Dau T.M., Ershova Y.Y., Tunik S.P., Melnikov A.S., Hirva P., Koshevoy I.O. Cyanide-Assembled d10 Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid-State Luminescence. Chem. – A Eur. J. 2017, vol. 24, no. 6, pp. 1404–1415. DOI: 10.1002/chem.201704642.
Kumar K., Stefańczyk O., Chorazy S., Nakabayashi K., Sieklucka B., Ohkoshi S. Effect of Noble Metals on Luminescence and Single-Molecule Magnet Behavior in the Cyanido-Bridged Ln–Ag and Ln–Au (Ln = Dy, Yb, Er) Complexes. Inorg. Chem., 2019, vol. 58, no. 9, pp. 5677–5687. DOI: 10.1021/acs.inorgchem.8b03634.
Mizuno Y., Okubo M., Kagesawa K., Asakura D., Kudo T., Zhou H., Oh-Ishi K., Okazawa A., Kojima N. Precise Electrochemical Control of Ferromagnetism in a Cyanide-Bridged Bimetallic Coor-dination Polymer. Inorg. Chem., 2012, vol. 51, no. 19, pp. 10311–10316. DOI: 10.1021/ic301361h.
Gros C.R., Peprah M.K., Felts A.C., Brinzari T.V., Risset O.N., Cain J.M., Ferreira C.F., Meisel M.W., Talham D.R. Synergistic Photomagnetic Effects in Coordination Polymer Heterostructure Particles of Hofmann-like Fe(4-phenylpyridine)2[Ni(CN)4]•0.5H2O and K0.4Ni[Cr(CN)6]0.8•nH2O. Dalton Trans., 2016, vol. 45, no. 42, pp. 16624–16634. DOI: 10.1039/c6dt02353c.
Lefebvre J., Callaghan F., Katz M.J., Sonier J.E., Leznoff D.B. A New Basic Motif in Cyanometallate Coordination Polymers: Structure and Magnetic Behavior of M(μ-OH2)2[Au(CN)2]2 (M = Cu, Ni). Chem.– Eur. J., 2006, vol. 12, no. 26, pp. 6748–6761. DOI: 10.1002/chem.200600303.
Lefebvre J., Tyagi P., Trudel S., Pacradouni V., Kaiser C., Sonier J.E., Leznoff D.B. Magnetic Frustration and Spin Disorder in Isostructural M(μ-OH2)2[Au(CN)2]2 (M = Mn, Fe, Co) Coordination Polymers Containing Double Aqua-Bridged Chains: SQUID and μSR Studies. Inorg. Chem., 2009, vol. 48, no. 1, pp. 55–67. DOI: 10.1021/ic801094m.
Geisheimer A.R., Huang W., Pacradouni V., Sabok-Sayr S.A., Sonier J.E., Leznoff D.B. Magnetic Properties of Isostructural M(H2O)4[Au(CN)4]2-based Coordination Polymers (M = Mn, Co, Ni, Cu, Zn) by SQUID and μsR Studies. Dalton Trans., 2011, vol. 40, no. 29 pp. 7505–7516.
DOI: 10.1039/c0dt01546f.
Lefebvre J., Chartrand D., Leznoff D.B. Synthesis, Structure and Magnetic Properties of 2-D and 3-D [cation]{M[Au(CN)2]3} (M = Ni, Co) Coordination Polymers. Polyhedron. 2007, vol. 26, no. 9–11, pp. 2189–2199. DOI: 10.1016/j.poly.2006.10.045.
Miller J.S. Organometallic- and Organic-based Magnets: New Chemistry and New Materials for the New Millennium. Inorg. Chem., 2000, vol. 39, no. 20, pp. 4392–4408. DOI: 10.1021/ic000540x.
Zhang J.-P., Liao P.-Q., Zhou H.-L., Lin R.-B., Chen X.-M. Single-crystal X-ray Diffraction Studies on Structural Transformations of Porous Coordination Polymers. Chem. Soc. Rev., 2014, vol. 43, no. 16, pp. 5789–5814. DOI: 10.1039/c4cs00129j.
Ovens J.S., Leznoff D.B. Thermal Expansion Behavior of M[AuX2(CN)2]-Based Coordination Polymers (M = Ag, Cu; X = CN, Cl, Br). Inorg. Chem., 2017, vol. 56, no 13, pp. 7332–7343. DOI: 10.1021/acs.inorgchem.6b03153.
Ovens J.S., Leznoff D.B. Probing Halogen⋯Halogen Interactions via Thermal Expansion Analysis. CrystEngComm, 2018, vol. 20, no. 13, pp. 1769–1773. DOI: 10.1039/c7ce02167d.
Lefebvre J., Batchelor R.J., Leznoff D.B. Cu[Au(CN)2]2(DMSO)2: Golden Polymorphs that Exhibit Vapochromic Behavior. J. Am. Chem. Soc., 2004, vol. 126, no. 49, pp. 16117–16125. DOI: 10.1021/ja049069n.
Lefebvre J., Korčok J.L., Katz M.J., Leznoff D.B. Vapochromic Behaviour of M[Au(CN)2]2 – based coordination polymers (M = Co, Ni). Sensors. 2012, vol. 12, no. 3, pp. 3669–3692. DOI: 10.3390/s120303669.
Varju B.R., Ovens J.S., Leznoff D.B. Mixed Cu(I)/Au(I) Coordination Polymers as Reversible Turn-on Vapoluminescent Sensors for Volatile Thioethers. Chem. Comm., 2017, vol. 53, no. 48, pp. 6500–6503. DOI: 10.1039/c7cc03428h.
Ovens J.S., Leznoff D.B. Raman Detected Sensing of Volatile Organic Compounds by Vapochromic Cu[AuX2(CN)2]2 (X = Cl, Br) Coordination Polymer Materials. Chem. Mater. 2015, vol. 27, no. 5, pp. 1465–1478. DOI: 10.1021/cm502998w.
Ovens J.S., Geisheimer A.R., Bokov A.A., Ye Z.-G., Leznoff D.B. The Use of Polarizable [AuX2(CN)2]− (X = Br, I) Building Blocks Toward the Formation of Birefringent Coordination Poly-mers. Inorg. Chem., 2010, vol. 49, no. 20, pp. 9609–9616. DOI: 10.1021/ic101357y.
Guan D., Thompson J.R., Leznoff D.B. Emissive and Birefringent Hg(CN)2-based Coordination Polymer Materials with Very Distorted Coordination Geometries. Can. J. Chem., 2018, vol. 96, no. 2, pp. 226–234. DOI: 10.1139/cjc-2017-0589.
Katz M.J., Leznoff D.B. Highly Birefringent Cyanoaurate Coordination Polymers: The Effect of Polarizable C-X Bonds (X = Cl, Br). J. Am. Chem. Soc., 2009, vol. 131, no. 51, pp. 18435–18444. DOI: 10.1021/ja907519c.
Thompson J.R., Goodman-Rendall K.A.S., Leznoff D.B. Birefringent, Emissive Cyanometallate-based Coordination Polymer Materials Containing Group(II) Metal-terpyridine Building Blocks. Polyhedron. 2016, no. 108, pp. 93–99. DOI: 10.1016/j.poly.2015.12.026.
Katz M.J., Kaluarachchi H., Batchelor R.J., Bokov A.A., Ye Z.-G., Leznoff D.B. Highly Birefringent Materials Designed Using Coordination Polymer Synthetic Methodology Angew. Chem., Int. Ed., 2007, vol. 46, no. 46, pp. 8804–8807. DOI: 10.1002/anie.200702885.
Thompson J.R., Roberts R.J., Williams V.E., Leznoff D.B. Birefringent, Emissive Coordination Polymers Incorporating Bis(benzimidazole)pyridine as an Anisotropic Building Block. Cryst. Eng. Comm., 2013, vol. 15, no. 45, pp. 9387–9393. DOI: 10.1039/c3ce41556b.
Thompson J.R., Katz M.J., Williams V.E., Leznoff D.B. Structural Design Parameters for Highly Birefringent Coordination Polymers. Inorg. Chem., 2015, vol. 54, no. 13, pp. 6462–6471. DOI: 10.1021/acs.inorgchem.5b00749.
Christopheson J.-C., Potts K.P., Bushuyev O.S., Topić F, Huskić I, Rissanen K., Barret C.J.,
Friščić T. Assembly and Dichroism of a Four-component Halogen-bonded Metal-organic Cocrystal Salt Solvate Involving Dicyanoaurate(I) Acceptors. Faraday Discuss. 2017, vol. 203, pp. 441–457. DOI: 10.1039/c7fd00114b.
Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Dis-playing Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst., 2009, vol. 42, pp. 339–341. DOI: 10.1107/S0021889808042726.
Sharutin V.V., Senchurin V.S., Sharutina O.K., Pakusina A.P., Fastovets O.A. Synthesis and Structure of Gold and Copper Complexes: [Ph3PCH2Ph]+[AuCl4]–, [NH(C2H4OH)3]+[AuCl4]– • H2O и [Ph3EtP]+2[Cu2Cl6]2–. Russ. J. Inorg. Chem., 2010, vol. 55, no. 9, pp. 1415–1420. DOI: 10.1134/S0036023610090135.
Sharutin V.V., Sharutina O.K., Senchurin V.S. Gold Complexes [Ph3PCH2CH=CHCH2PPh3]2+[AuCl4]–2 and [Ph3PCH2CH2COOH]+[AuCl4]–: Synthesis and Structure. Russ. J. Inorg. Chem., 2015, vol. 60, no. 8, pp. 942–946. DOI: 10.1134/S0036023615080173.
Senchurin V.S. Gold Complexes [Ph4Bi][Au(CN)2Hal2] (Hal = Cl, Br). Synthesis and Structure. Bulletin of the South Ural State University. Ser. Chemistry. 2019, vol. 11, no. 3. pp. 50–58. (in Russ.). DOI: 10.14529/chem190306.
Ovens J.S., Leznoff D.B. Thermally Triggered Reductive Elimination of Bromine from Au(III) as a Path to Au(I)-based Coordination Polymers. Dalton Trans., 2011, vol. 40, pp. 4140–4146. DOI: 10.1039/C0DT01772H.
Marangoni G., Pitteri B., Bertolasi V., Ferretti V., Gilli G. Crystal Structures and Properties of [Au(phen){(CN)0.92Br0.08}2]Br and [Au(phen)(CN){(CN)0.82Br0.18}]•0.5trans-[Au(CN)2Br2]•0.5Br•phen (phen = 1,10-phenanthroline) Obtained by Disproportionation of Five-co-ordinate Bromodicyano(1,10-phenanthroline)gold(III). Two Examples of Secondary Co-ordination and CN/Br Disorder in Square-planar Gold(III) Complexes. J. Chem. Soc., Dalton Trans., 1987, pp. 2235–2240. DOI: 10.1039/DT9870002235.
Ovens J.S., Truong K.N., Leznoff D.B. Targeting [AuCl2(CN)2]− Units as Halophilic Building Blocks in Coordination Polymers. Inorg. Chim. Acta. 2013, vol. 403, pp. 127–135. DOI: 10.1016/j.ica.2013.02.011.
Ovens J.S., Truong K.N., Leznoff D.B. Structural Organization and Dimensionality at the Hands of Weak Intermolecular Au⋯Au, Au⋯X and X⋯X (X = Cl, Br, I) Interactions. Dalton Trans., 2012, vol. 41, pp. 1345–1351. DOI: 10.1039/C1DT11741F.
Pitteri B., Bortoluzzi M., Bertolasi V. Chelate Polypyridine Ligand Rearrangement in Au(III) Complexes. Transition Met. Chem., 2008, vol. 33, no. 5, pp. 649–654. DOI: 10.1007/s11243-008-9092-9.
Cordero B., Gómez V., Platero-Prats A.E., Revés M., Echeverría J., Cremades E., Barragána F., Alvarez S. Covalent Radii Revisited. Dalton Trans., 2008, iss. 21, pp. 2832–2838. DOI: 10.1039/B801115J.
Mantina M., Chamberlin A.C., Valero R., Cramer C.J., Truhlar D.G. Consistent Van der Waals Radii for the Whole Main Group J. Phys. Chem. A., 2009, vol. 113, no. 19, pp. 5806–5812. DOI: 10.1021/jp8111556.
Sakurai T., Sundaralingam M., Jeffrey G.A. A Nuclear Quadrupole Resonance and X-ray Study of the Crystal Structure of 2,5-Dichloroaniline. Acta Crystallogr. 1963, vol. 16, no. 5, pp. 354–363. DOI: 10.1107/S0365110X63000979.
DOI: http://dx.doi.org/10.14529/chem200103
Refbacks
- There are currently no refbacks.
