Ионные комплексы [Ph3PBu-n][Au(CN)2Cl2] и [Ph3PCH2OMe][Au(CN)2Cl2]: синтез и строение
Аннотация
[Ph3PBu-n][Au(CN)2Cl2] (1) и [Ph3PCH2OMe][Au(CN)2Cl2] (2) соответственно. По данным рентгеноструктурного анализа, проведенном при 293 К на автоматическом четырехкружном дифрактометре D8 Quest Bruker (двухкоординатный CCD – детектор, MoKα-излучение, λ = 0,71073 Å, рафитовый монохроматор), кристаллов 1 [C24H24N2PCl2Au, M 639,29; сингония моноклинная, группа симметрии P2/c; параметры ячейки:
a = 17,790(10), b = 8,750(7), c = 16,295(9) Å; α = 90,00°, β = 95,984(16)°, γ = 90,00°;
V = 2523(3) Å3; размер кристалла (0,51×0,34×0,26 мм; интервалы индексов отражений
–24 ≤ h ≤ 23, –12 ≤ k ≤ 11, –22 ≤ l ≤ 22; всего отражений 90802; независимых отражений 6806; Rint0,0538; GOOF 1,029; R1 = 0,0722, wR2 = 0,2385; остаточная электронная плотность –1,54/7,70 e/Å3] и 2 [C22H20N2PCl2OAu, M 627,24; сингония триклинная, группа симметрии P–1; параметры ячейки: a = 8,251(7), b = 9,170(6), c = 16,479(13) Å; α = 77,85(3)°,
β = 87,40(4)°, γ = 77,53(4)°; V = 1190,1(16) Å3; размер кристалла 0,73×0,46×0,43 мм; интервалы индексов отражений –12 ≤ h ≤ 12, –14 ≤ k ≤ 14, –25 ≤ l ≤ 25; всего отражений 64367; независимых отражений 9150; Rint0,0495; GOOF 1,031; R1 = 0,0735, wR2 = 0,2304; остаточная электронная плотность –3,87/4,52 e/Å3] атомы фосфора имеют искаженную тетраэдрическую координацию (углы СPС 108,2(4)-110,6(5)° (1), 107,5(4)-112,1(4)° (2); длины связей P-С 1,794(9)-1,814(9) Å (1), 1,786(8)-1,798(7) Å (2)). Атомы золота в центросимметричных кристаллографически независимых анионах [Au(CN)2Hal2]- имеют малоискаженную плоскоквадратную координацию (транс-углы ClAuCl и CAuC близки к 180°; цис-углы CAuCl изменяются в интервале 86,2(5)–93,8(5)°), длины связей Au–Cl составляют: 2,418(4) Å и 2,396(2) Å (1), 2,360(2) Å и 2,405(3) Å (2); Au–C – 2,002(14) Å и 2,264(18) Å (1), 1,992(11) Å и 2,102(18) Å (2). Структурная организация в кристаллах 1 и 2 обусловлена слабыми ван-дер-ваальсовыми взаимодействиями: С–HBu∙∙∙N≡C 2,62 Å (1), C–HPh∙∙∙N≡C 2,66–2,67 Å (2).
Ключевые слова
Полный текст:
PDFЛитература
Lefebvre, J. Synthesis, Structure and Magnetic Properties of 2-D and 3-D [cation]{M[Au(CN)2]3} (M = Ni, Co) Coordination Polymers / J. Lefebvre, D. Chartrand, D.B. Leznoff // Polyhedron. – 2007. –V. 26, № 9–11. – P. 2189–2199. DOI: 10.1016/j.poly.2006.10.045.
Synergistic Photomagnetic Effects in Coordination Polymer Heterostructure Particles of Hofmann-like Fe(4-phenylpyridine)2[Ni(CN)4]•0.5H2O and K0.4Ni[Cr(CN)6]0.8•nH2O / C.R. Gros,
M.K. Peprah, A.C. Felts et al. // Dalton Trans. – 2016. – V. 45, № 42. – P. 16624–16634.
DOI: 10.1039/c6dt02353c.
Precise Electrochemical Control of Ferromagnetism in a Cyanide-Bridged Bimetallic Coordination Polymer / Y. Mizuno, M. Okubo, K. Kagesawa et al. // Inorg. Chem. – 2012. – V. 51, № 19. –
P. 10311–10316. DOI: 10.1021/ic301361h.
Magnetic Frustration and Spin Disorder in Isostructural M(μ-OH2)2[Au(CN)2]2 (M = Mn, Fe, Co) Coordination Polymers Containing Double Aqua-Bridged Chains: SQUID and μSR Studies /
J. Lefebvre, P. Tyagi, S. Trudel et al. // Inorg. Chem. – 2009. – V. 48, № 1. – P. 55–67.
DOI: 10.1021/ic801094m.
Magnetic Properties of Isostructural M(H2O)4[Au(CN)4]2-Based Coordination Polymers (M = Mn, Co, Ni, Cu, Zn) by SQUID and μsR Studies / A.R. Geisheimer, W. Huang, V. Pacradouni et al. // Dalton Trans. – 2011. – V. 40, № 29. – P. 7505–7516. DOI: 10.1039/c0dt01546f.
A New Basic Motif in Cyanometallate Coordination Polymers: Structure and Magnetic Behavior of M(μ-OH2)2[Au(CN)2]2 (M = Cu, Ni) / J. Lefebvre, F. Callaghan, M.J. Katz et al. // Chem. Eur. J. – 2006. – V. 12, № 26. – P. 6748–6761. DOI: 10.1002/chem.200600303.
Effect of Noble Metals on Luminescence and Single-Molecule Magnet Behavior in the Cyanido-Bridged Ln–Ag and Ln–Au (Ln = Dy, Yb, Er) Complexes / K. Kumar, O. Stefańczyk, S. Chorazy et al. // Inorg. Chem. – 2019. – V. 58, № 9. – P. 5677–5687. DOI: 10.1021/acs.inorgchem.8b03634.
Roberts, R.J. Color-Tunable and White-Light Luminescence in Lanthanide–Dicyanoaurate Coor-dination Polymers / R.J. Roberts, D. Le, D.B. Leznoff // Inorg. Chem. – 2017. – V. 56, № 14. –
P. 7948–7959. DOI: 10.1021/acs.inorgchem.7b00735.
Photophysical Investigation of Silver/Gold Dicyanometallates and Tetramethylammonium Net-works. An Experimental and Theoretical Investigation / A.D. Nicholas, R.M. Bullard, R.D. Pike et al. // Eur. J. Inorg. Chem. – 2018. – № 7. P. 956–962. DOI: 10.1002/ejic.201801407.
Cyanide-Assembled d10 Coordination Polymers and Cycles: Excited State Metallophilic Modu-lation of Solid-State Luminescence / A. Belyaev, T. Eskelinen, T.M. Dau et al. // Chem. Eur. J. – 2017. – V. 24, № 6. – P. 1404–1415. DOI: 10.1002/chem.201704642.
Polymorphism of Zn[Au(CN)2]2 and Its Luminescent Sensory Response to NH3 Vapor /
M.J. Katz, T. Ramnial, H.-Z. Yu et al. // J. Am. Chem. Soc. – 2008. – V. 130, № 32. – P. 10662–10673. DOI: 10.1021/ja801773p.
Ovens, J.S. Designing Tunable White-Light Emission from an Aurophilic CuI/AuI Coordination Polymer with Thioether Ligands / J.S. Ovens, P.R. Christensen, D.B. Leznoff // Chem. Eur. J. – 2016. – V. 22, № 24. – P. 8234–8239. DOI: 10.1002/chem.201505075.
Lefebvre, J. Cu[Au(CN)2]2(DMSO)2: Golden Polymorphs that Exhibit Vapochromic Behavior / J. Lefebvre, R.J. Batchelor, D.B. Leznoff // J. Am. Chem. Soc. – 2004. – V. 126, № 49. – P. 16117–16125. DOI: 10.1021/ja049069n.
Vapochromic Behaviour of M[Au(CN)2]2 –Based Coordination Polymers (M = Co, Ni) /
J. Lefebvre, J.L. Korčok, M.J. Katz et al. // Sensors. – 2012. – V. 12, № 3. – P. 3669–3692.
DOI: 10.3390/s120303669.
Varju, B.R. Mixed Cu(I)/Au(I) Coordination Polymers as Reversible Turn-on Vapoluminescent Sensors for Volatile Thioethers / B.R. Varju, J.S. Ovens, D.B. Leznoff // Chem. Comm. – 2017. – V. 53, № 48. – P. 6500–6503. DOI: 10.1039/c7cc03428h.
Ovens, J.S. Raman Detected Sensing of Volatile Organic Compounds by Vapochromic Cu[AuX2(CN)2]2 (X = Cl, Br) Coordination Polymer Materials / J.S. Ovens, D.B. Leznoff // Chem.
Mater. – 2015. – V. 27, № 5. – P. 1465–1478. DOI: 10.1021/cm502998w.
The Use of Polarizable [AuX2(CN)2]− (X = Br, I) Building Blocks Toward the Formation of Birefringent Coordination Polymers / J.S. Ovens, A.R. Geisheimer, A.A. Bokov et al. // Inorg. Chem. – 2010. – V. 49, № 20. – P. 9609–9616. DOI: 10.1021/ic101357y.
Guan, D. Emissive and Birefringent Hg(CN)2-Based Coordination Polymer Materials with Very Distorted Coordination Geometries / D. Guan, J.R. Thompson, D.B. Leznoff // Can. J. Chem. – 2018. –
V. 96, № 2. P. 226–234. DOI: 10.1139/cjc-2017-0589.
Katz, M.J. Highly Birefringent Cyanoaurate Coordination Polymers: The Effect of Polarizable C-X Bonds (X = Cl, Br) / M.J. Katz, D.B. Leznoff // J. Am. Chem. Soc. – 2009. – V. 131, № 51. –
P. 18435–18444. DOI: 10.1021/ja907519c.
Thompson, J.R. Birefringent, Emissive Cyanometallate-Based Coordination Polymer Materials Containing Group(II) Metal-Terpyridine Building Blocks / J.R. Thompson, K.A.S. Goodman-Rendall,
D.B. Leznoff // Polyhedron. – 2016. – V. 108. – P. 93–99. DOI: 10.1016/j.poly.2015.12.026.
Highly Birefringent Materials Designed Using Coordination Polymer Synthetic Methodology / M.J. Katz, H. Kaluarachchi, R.J. Batchelor et al. // Angew. Chem., Int. Ed. – 2007. – V. 46, № 46. –
P. 8804–8807. DOI: 10.1002/anie.200702885.
Birefringent, Emissive Coordination Polymers Incorporating Bis(benzimidazole)pyridine as an Anisotropic Building Block / J.R. Thompson, R.J. Roberts, V.E. Williams et al. // CrystEngComm. – 2013. – V. 15, № 45. – P. 9387–9393. DOI: 10.1039/c3ce41556b.
Structural Design Parameters for Highly Birefringent Coordination Polymers / J.R. Thompson, M.J. Katz, V.E. Williams et al. // Inorg. Chem. – 2015. – V. 54, № 13. – P. 6462–6471.
DOI: 10.1021/acs.inorgchem.5b00749.
Assembly and Dichroism of a Four-Component Halogen-Bonded Metal–Organic Cocrystal Salt Solvate Involving Dicyanoaurate(I) Acceptors / J.-C. Christopherson, K.P. Potts, O.S. Bushuev et al. // Faraday Discuss. – 2017. – V. 203. – P. 441–457. DOI: 10.1039/c7fd00114b.
Ovens, J.S. Thermal Expansion Behavior of M[AuX2(CN)2]-Based Coordination Polymers
(M = Ag, Cu; X = CN, Cl, Br) / J.S. Ovens, D.B. Leznoff // Inorg. Chem. – 2017. – V. 56, № 13. –
P. 7332–7343. DOI: 10.1021/acs.inorgchem.6b03153.
Ovens, J.S. Probing Halogen⋯Halogen Interactions via Thermal Expansion Analysis / J.S. Ovens, D.B. Leznoff // Cryst Eng Comm. – 2018. – V. 20, № 13. – P. 1769–1773. DOI: 10.1039/c7ce02167d.
Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Display-ing Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
OLEX2: Complete Structure Solution, Refinement and Analysis Program / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea et al. // J. Appl. Cryst. – 2009. – V. 42. – P. 339–341.
DOI: 10.1107/S0021889808042726.
Шарутин, В.В. Синтез и строение дицианоауратов органилтрифенилфосфония [Ph3PR]+[Au(CN)2]−, R = CH2C(O)Ph, CHCHMe, (CH2)4Br / В.В. Шарутин, О.К. Шарутина, М.А. Попкова // Журн. неорг. химии – 2019. – Т. 64, № 6. – С. 607–612. DOI: 10.1134/S0044457X1906014X.
Синтез и строение комплексов золота и меди: [Ph3PCH2Ph]+[AuCl4]–, [NH(C2H4OH)3]+[AuCl4]– • H2O и [Ph3EtP]+2[Cu2Cl6]2– / В.В. Шарутин, В.С. Сенчурин,
А.П. Пакусина и др. // Журн. неорг. химии – 2010. – Т. 55, № 9. – С. 1499–1505.
Шарутин, В.В. Синтез и строение комплексов золота [Ph3PCH2CH=CHCH2PPh3]2+
[AuCl4]–2 и [Ph3PCH2CH2COOH]+[AuCl4]– / В.В. Шарутин, О.К. Шарутина, В.С. Сенчурин // Журн. неорг. химии – 2015. – Т. 60, № 8. – С. 1040–1044. DOI: 10.7868/S0044457X15080188.
Pitteri, B. Chelate Polypyridine Ligand Rearrangement in Au(III) Complexes / B. Pitteri,
M. Bortoluzzi, V. Bertolasi // Transit. Met. Chem. – 2008. – V. 33, № 5. – P. 649–654.
DOI: 10.1007/s11243-008-9092-9.
Ovens, J.S. Targeting [AuCl2(CN)2]− Units as Halophilic Building Blocks in Coordination Poly-mers / J.S. Ovens, K.N. Truong, D.B. Leznoff // Inorg. Chim. Acta. – 2013. – V. 403. – P. 127–135. DOI: 10.1016/j.ica.2013.02.011.
Crystal Structures and Properties of [Au(phen){(CN)0.92Br0.08}2]Br and [Au(phen)(CN){(CN)0.82Br0.18}]•0.5trans-[Au(CN)2Br2]•0.5Br•phen (phen = 1,10-phenanthroline) Ob-tained by Disproportionation of Five-Coordinate Bromodicyano(1,10-phenanthroline)gold(III). Two Examples of Secondary Coordination and CN/Br Disorder in Square-Planar Gold(III) Complexes /
G. Marangoni, B. Pitteri, V. Bertolasi et al. // J. Chem. Soc., Dalton Trans. – 1987. – № 9. – P. 2235–2240. DOI: 10.1039/DT9870002235.
Ovens, J.S. Structural Organization and Dimensionality at the Hands of Weak Intermolecular Au⋯Au, Au⋯X and X⋯X (X = Cl, Br, I) Interactions / J.S. Ovens, K.N. Truong, D.B. Leznoff //
Dalton Trans. – 2012. – V. 41, № 4. – P. 1345–1351. DOI: 10.1039/C1DT11741F.
Ovens, J.S. Thermally Triggered Reductive Elimination of Bromine from Au(III) as a Path to Au(I)-based Coordination Polymers / J.S. Ovens, D.B. Leznoff // Dalton Trans. – 2011. – V. 40, № 16. –
P. 4140–4146. DOI: 10.1039/C0DT01772H.
Дицианодибромоаураты алкилтрифенилфосфония [Ph3PAlk][Au(CN)2Br2], Alk = CH2C6H4(OH)-2, CH2C6H11-cyclo, CH2Ph, CH2C6H4CN-4 / В.В. Шарутин, О.К. Шарутина, Н.М. Тарасова и др. // Журн. неорг. химии. – 2020. – Т. 65, № 2. – С. 171–178. DOI: 10.31857/S0044457X20020154.
Covalent Radii Revisited / B. Cordero, V. Gómez, A.E. Platero-Prats et al. // Dalton Trans. – 2008. – № 21. – P. 2832–2838. DOI: 10.1039/B801115J.
Consistent Van der Waals Radii for the Whole Main Group / M. Mantina, A.C. Chamberlin, R. Valero et al. // J. Phys. Chem. A. – 2009. – V. 113, № 19. – P. 5806–5812. DOI: 10.1021/jp8111556.
Ссылки
- На текущий момент ссылки отсутствуют.