Approach to shaping the technical appearance of an unmanned aerial vehicle
Abstract
The article focuses upon the substantiation of efficiency criterion at formation of technical shape of an unmanned aerial vehicles.
The authors analyze the criteria of efficiency of applying unmanned aerial vehicles, such as relative weight, flight time, unit cost of flight and life cycle cost and provide reasoning for
the necessity of using the combined criterion considering economic and functional efficiency. Variable, non-variable and uncertain parameters characterizing an unmanned aerial vehicles are formulated. The optimization problem of determining the technical appearance is considered. The process of technical appearance formation is based on three interrelated processes: aerodynamic arrangement; volume-mass arrangement and structural-force arrangement.
The purpose of the technical appearance is to find such interrelated values of the parameters of an unmanned aerial vehicle (UAV), which ensure the achievement of a compromise between the requirements while ensuring the extreme of any selected generalized criterion of optimality, for example, the minimum cost of the life cycle of the finished product - the aircraft.
This criterion is one of the most general criteria for aircraft efficiency, but it is difficult to calculate it at an early stage of development. Therefore, in practice, it uses other criteria that are close to the cost of the life cycle stages.
The specific feature of the process of UAV glare formation, as well as any complex technical system, is a large number of unknown and high degree of uncertainty, especially at the early stages of development. To overcome this uncertainty, the design process is divided into a series of successive iterative stages.
The task of searching for the most advantageous combination of UAV design parameters depending on its purpose can be considered as the task of searching for the extremum of some target function – optimization task.
Based on the conducted substantiation the authors propose the technique of defining the rational appearance of an unmanned aerial vehicles, considering the accepted restrictions.
Keywords
Full Text:
PDF (Русский)References
Varsha, N. Conceptual design of high performance Unmanned Aerial Vehicle / N. Varsha, V. Somashekar // International Conference on Advances in Manufacturing, Materials and Energy Engineering, IConMMEE 2018. –Conference Series: Materials Science and Engineering. – 2018. – Vol. 376, Iss. 1.
Taek Hyunoh. Conceptual design of small unmanned aerial vehicle with proton exchange membrane fuel cell system for long endurance mission / Taek Hyunoh // Energy Conversion and Management. – 2018. – Vol. 176, no. 15. – P. 349–356.
Austin, Reg. Unmanned aircraft systems: UAVS design, development and deployment / Reg Austin. – Great Britain, Wiltshire, 2011. – 365 p.
Kimon, P. Valavanis. Handbook of Unmanned Aerial Vehicles / P. Valavanis Kimon, J. George – Springer Netherlands, 2014. – P. 22–30.
Haibin Duan. Bio-inspired Computation in Unmanned Aerial Vehicles / Duan Haibin, Li Pei – Springer Science & Business Media, 2014. – 269 p.
Общие виды и характеристики беспилотных летательных аппаратов / А.Г. Гребеников, А.К. Мялица, В.В. Парфенюк и др. – Харьков: Харьков. авиационный ин-т, 2008. – 377 с.
Трофимчук, М.В. Формирование технического облика самолётных силовых систем оперативно-тактического истребителя / М.В. Трофимчук, С.А. Серебрянский, Д.Ю. Стрелец // Общероссийский научно-технический журнал «Полет». – 2018. – № 6. – С. 25–32.
Методология формирования технического облика экспортно ориентированных авиационных комплексов / под ред. В.И. Барковского. – М.: ФИЗМАТЛИТ, 2008. – 244 с.
Мышкин, Л.В. Прогнозирование развития авиационной техники / Л.В. Мышкин. – М.: Издат. дом «Наука», 2017. – 480 с.
Проектирование самолётов / под ред. М.А. Погосяна. – 5-е изд., перераб. и доп. – М.: Инновац. машиностроение, 864 с.
Ayperi Karabuda. The New Aerial Photography from Dronestagram / Karabuda Ayperi, Dronescapes Ecer – Thames & Hudson, 2017. – 288 p.
Шеваль, В.В. Беспилотные летательные аппараты как носители оборудования комп¬лексных систем наблюдения / В.В. Шеваль; под ред. М.Н. Красилыцикова. – М.: Изд-во МАИ-ПРИНТ, 2010. – 104 с.
Yan-Yee Andy Ko, The Role of Constraints and Vehicle Concepts in Transport Design: A Comparison of Cantilever and Strut-Braced Wing Airplane Concepts / Andy Ko Yan-Yee. Masters Thesis. – Virginia Polytechnic Institute and State University; April 2000. – 109 p.
The Conceptual Design and Aerodynamic Characteristics Analysis of the Diamond Joined-Wing Configuration UAV / S. Junlei, Z. Zhou, W. Heping, L. Shan // 2017 5th International Conference on Mechanical, Automotive and Materials Engineering, CMAME – 2017. – P. 42–47.
Комиссаров, А.А. НТО «Разработка методик определения параметров беспилотного летательного аппарата в условиях заданных стоимостных ограничений» / А.А. Комиссаров // ОАО «ОКБ Сухого» № НТО-БТ-122/003-11-11, 2011.
Roskam Jan. Airplane Design, Part IV / Jan Roskam. – DARcorporation; Lawrence, KS, 2007. – 403 p.
Проектирование самолетов / под ред. С.М. Егера. – М.: Машиностроение, 1983. – 616 с.
Конструкция и прочность летательных аппаратов: учеб. для вузов ВВС / под ред. О.В. Болховитинова. – М.: ВВИА им. проф. Н.Е. Жуковского, 2004. – 678 с.
Jay Gundlach. Designing Unmanned Aircraft Systems: A Comprehensive Approach / Gundlach Jay. – American Institute of Aeronautics & Astronautics, 2014. – 848 p.
McCanny Ronan Statistics and Trends in Commercial Transport Aircraft / Ronan McCanny. – Final-year project with the author as supervisor, 2005.
Refbacks
- There are currently no refbacks.




