Sobolev Type Mathematical Models with Relatively Positive Operators in the Sequence Spaces
Аннотация
В пространствах последовательностей, являющихся аналогами функциональных пространств Соболева, рассмотрена математическая модель, прототипами которой служат уравнение Баренблатта–Желтова–Кочиной и уравнение Хоффа. Отметим, что эти уравнения являются вырожденными уравнениями или уравнениями соболевского типа. Для таких уравнений отличительной чертой служат феномены несуществования и неединственности решений. Поэтому нахождение условий существования позитивных решений таких уравнений – актуальное направление исследований. В статье описаны условия, достаточные для существования позитивных решений в рассмотренной математической модели. Фундаментом наших исследований стали теория позитивных полугрупп операторов и теория вырожденных голоморфных групп операторов. В результате слияния этих теорий получилась новая теория вырожденных позитивных голоморфных групп операторов. Авторы надеются, что результаты новой теории найдут применение в экономических и инженерных задачах
Ключевые слова
соболевы пространства последовательностей; модели соболевского типа; вырожденные позитивные голоморфные группы операторов
Полный текст:
PDFDOI: http://dx.doi.org/10.14529/mmph170404
Ссылки
- На текущий момент ссылки отсутствуют.