Correlations Between Elements and Sequences in a Numerical Prism
Аннотация
Рассматривается числовая призма, ранее введенная автором как упорядоченное множество в связи с исследованием трехпараметрического вероятностного распределения типа гиперболического косинуса, являющегося обобщением известного двухпараметрического распределения Майкснера. В геометрической терминологии элементы числовой призмы – коэффициенты моментообразующих полиномов для указанного распределения, которые получаются с помощью как дифференциальных, так и алгебраических рекуррентных соотношений.
Каждый из бесконечного количества элементов зависит от трех индексов, которые и определяют его местоположение в призме. При фиксировании одного или двух индексов получаются сечения призмы: числовые треугольники или числовые последовательности. Среди сечений имеются широко известные, например, числовой треугольник Стирлинга, числовой треугольник коэффициентов в полиномах Бесселя, последовательности тангенциальных и секансных чисел и др. Однако подавляющее большинство числовых множеств в сечениях призмы ранее в литературе не встречались.
Ввиду структуры и алгоритма построения, сечения числовой призмы оказываются связанными между собой не только общей формулой построения, но и определенными соотношениями. Как результат, в статье представлены формулы связи между различными группами элементов. В частности, найдены разложение секансных чисел на сумму произведений, сгруппированных по количеству сомножителей тангенциальных чисел с указанием соответствующих коэффициентов в разложении, представление (автовыражение) элементов последовательности чередующихся секансных и тангенциальных чисел через свои предыдущие, а также ряд других соотношений для последовательностей и отдельных элементов.
Ключевые слова
Полный текст:
PDFDOI: http://dx.doi.org/10.14529/mmph190104
Ссылки
- На текущий момент ссылки отсутствуют.