О структуре пространства однородных полиномиальных дифференциальных уравнений на окружности

Владимир Шлеймович Ройтенберг

Аннотация


Рассматриваются дифференциальные уравнения, правые части которых являются однородными тригонометрическими полиномами степени n. Фазовым пространством таких уравнений является окружность. Описаны грубые уравнения – уравнения, для которых топологическая структура фазового портрета не меняется при переходе к близкому уравнению. Уравнение является грубым тогда и только тогда, когда его правая часть имеет только простые нули, то есть все особые точки которого – гиперболические. Множество всех грубых уравнений открыто и всюду плотно в пространстве Eh(n) рассматриваемых уравнений. Описаны связные компоненты этого множества. Два грубых уравнения, имеющие особые точки, принадлежат одной компоненте тогда и только тогда, когда они топологически эквивалентны. Во множестве всех негрубых уравнений выделено открытое и всюду плотное подмножество, состоящее из уравнений первой степени негрубости – уравнений, для которых топологическая структура фазового портрета не меняется при переходе к близкому негрубому уравнению. Оно является аналитическим подмногообразием коразмерности один в Eh(n) (бифуркационным многообразием) и состоит из уравнений, для которых все особые точки гиперболические, за исключением двух седло-узловых особых точек. Доказано, что любые два грубых уравнения можно соединить в Eh(n) гладкой дугой с конечным числом бифуркационных точек, в которых эта дуга трансверсальна бифуркационному многообразию.


Ключевые слова


дифференциальное уравнение на окружности; тригонометрический полином; грубость; бифуркационное многообразие; связная компонента

Полный текст:

PDF


DOI: http://dx.doi.org/10.14529/mmph200203

Ссылки

  • На текущий момент ссылки отсутствуют.