О структуре пространства однородных полиномиальных дифференциальных уравнений на окружности
Аннотация
Рассматриваются дифференциальные уравнения, правые части которых являются однородными тригонометрическими полиномами степени n. Фазовым пространством таких уравнений является окружность. Описаны грубые уравнения – уравнения, для которых топологическая структура фазового портрета не меняется при переходе к близкому уравнению. Уравнение является грубым тогда и только тогда, когда его правая часть имеет только простые нули, то есть все особые точки которого – гиперболические. Множество всех грубых уравнений открыто и всюду плотно в пространстве Eh(n) рассматриваемых уравнений. Описаны связные компоненты этого множества. Два грубых уравнения, имеющие особые точки, принадлежат одной компоненте тогда и только тогда, когда они топологически эквивалентны. Во множестве всех негрубых уравнений выделено открытое и всюду плотное подмножество, состоящее из уравнений первой степени негрубости – уравнений, для которых топологическая структура фазового портрета не меняется при переходе к близкому негрубому уравнению. Оно является аналитическим подмногообразием коразмерности один в Eh(n) (бифуркационным многообразием) и состоит из уравнений, для которых все особые точки гиперболические, за исключением двух седло-узловых особых точек. Доказано, что любые два грубых уравнения можно соединить в Eh(n) гладкой дугой с конечным числом бифуркационных точек, в которых эта дуга трансверсальна бифуркационному многообразию.
Ключевые слова
Полный текст:
PDFDOI: http://dx.doi.org/10.14529/mmph200203
Ссылки
- На текущий момент ссылки отсутствуют.