Reactions of Pentaphenylantimony and Penta-Para-Tolylanimony with Calixarene [4-t-BuC6H2OH(S-2)]4
Abstract
Pentaphenylantimony and penta-para-tolylantimony react with calixarene [4-t-BuC6H2OH(S-2)]4 (СArH) by way of arene elimination and formation of the [Ph4Sb]+[СAr]- × TolH (1),
 [p-Tol4Sb]+[CAr]- × H2O (2) ionic products with a yield up to 96%. The compound has been identified by IR spectroscopy and X-ray diffraction analysis. According to the X-ray diffraction data, compounds 1 and 2 are ionic complexes with solvate molecules of toluene (1) and water (2). The cation has a tetrahedral coordination of the antimony atom with aryl ligands at the polyhedron vertices; the anion is represented by the deprotonated form of p-tert-butylthiacalix[4]arene. The three tert-butyl groups, the phenyl ring and solvated toluene in the structure of compound 1, and two tert-butyl fragments in the structure of compound 2 are disordered over two positions. The tetrahedral coordination of antimony atoms in the cations of compounds 1 and 2 is slightly distorted. The CSbC angles deviate from the theoretical value and vary within 106.0(4)−117.7(4)° (1), 105.75(15)−112.84(15)° (2). The average Sb–C bond lengths are 2.101(3) and 2.106(4) Å in structures 1 and 2, respectively. The [СAr]- anion is in the cone conformation, the upper rim of which is represented by the tert-butyl groups in the para-position, while the lower one is represented by hydroxy groups, one of which is deprotonated. The СAr–O– bond length (1.318(4) (1) and 1.326(4) (2) Å) is less than the average value of the СAr–OH bond lengths (1.338(4) (1) and 1.343(4) (2) Å), which indicates increasing multiplicity of the bond and localization of a negative charge on the oxygen atom. Intramolecular hydrogen bonds with the neiboring O atom are observed. The H∙∙∙O distances are 2.16, 1.69, 1.77 Å in 1 and 1.92, 1.79, 1.76 Å in 2. Dihedral angles between opposite phenoxide rings are 60.64° and 87.07° (1) and 83.85° and 80.42° (2), which indicates somewhat less symmetric anion in structure 1 than in structure 2. The formation of the crystal spatial structure is due to the formation of hydrogen bonds between ions with participation of oxygen and sulfur atoms, as well as СН∙∙∙π–interactions, while the ions form chains in the crystal of compound 1, and layers in the crystal of compound 2. Complete tables of atom coordinates, bond lengths and valence angles are deposited at the Cambridge Crystallographic Data Center (No. 1850118 (1); No. 2013220 (2); deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk/data_request/cif).
Keywords
Full Text:
PDF (Русский)References
Cambridge Crystallografic Datebase. Release 2020. Cambridge.
Шарутин, В.В. Синтез, реакции и строение арильных соединений пятивалентной сурьмы / В.В. Шарутин, А.И. Поддельский, О.К. Шарутина // Журн. коорд. химии. – 2020. – Т. 46, № 10. – С. 579–648. DOI: 10.31857/S0132344X20100011.
Синтез и строение цианамида тетрафенилсурьмы / И.В. Егорова, В.В. Жидков, И.П. Гри-нишак, А.А. Раханский // Журн. общей химии. – 2014. – Т. 84, № 7. – С. 1176–1178.
Establishing the Coordination Chemistry of Antimony(V) Cations: Systematic Assessment of Ph4Sb(OTf) and Ph3Sb(OTf)2 as Lewis Acceptors / A.P.M. Robertson, S.S. Chitnis, H.A. Jenkins et al. // Chem. Eur. J. – 2015. – V. 21, № 21. – P. 7902–7913. DOI: 10.1002/chem.201406469.
Pan, B. [Sb(C6F5)4][B(C6F5)4]: An Air Stable, Lewis Acidic Stibonium Salt That Activates Strong Element-Fluorine Bonds / B. Pan, F.P. Gabbai // J. Am. Chem. Soc. – 2014. – V. 136, № 27. – P. 9564–9567. DOI: 10.1021/ja505214m.
Ortho-metallation of a Phenyl Ring with Antimony(V) / N. Dinsdale, J.C. Jeffrey, R.J. Kilby et al. // Inorg. Chim. Acta. – 2007. – V. 360, № 1. – P. 418–420. DOI: 10.1016/j.ica.2006.07.091.
Influence of the Catalyst Structure in the Cycloaddition of Isocyanates to Oxiranes Promoted by Tetraarylstibonium Cations / M. Yang, N. Pati, G. Belanger-Chabot et al. // Dalton Trans. – 2018. – V. 47. – P. 11843–11850. DOI: 10.1039/C8DT00702K.
Синтез, структурное и MAS ЯМР (13С, 15N) спектральное исследование комплексов тетрафенилсурьмы с N,N-диалкилдитиокарбаматными лигандами: проявление канформационной изомерии / А.В. Иванов, А.П. Пакусина, М.А. Иванов и др. // Докл. акад. наук СССР. – 2005. – Т. 401, № 5. – С. 643–647.
Structure and Dynamic Behavior of Neutral Hexacoordinate Antimony Compounds with Intramolecular Coordination / H. Yamamichi, S. Matsukawa, S. Kojima et al. // Heteroat. Chem. – 2011. – V. 22, № 3–4. – P. 553–561. DOI: 10.1002/hc.20721.
Wang G.-C., Lu Y.-N., Xiao J., Yu L., Song H.-B., Li J.-S., Cui J.-R., Wang R.-Q., Ran F.-X. Synthesis, Crystal Structures and in vitro Antitumor Activities of Some Organoantimony Arylhydroxamates. J. Organomet. Chem., 2005, vol. 690, no. 1, pp. 151–156. DOI: 10.1016/j.jorganchem.2004.09.002.
Synthesis, Crystal Structures and in vitro Antitumor Activities of Some Arylantimony Deriva-tives of Analogues of Demethylcantharimide / G.-C. Wang, J. Xiao, L. Yu. et al. // J. Organomet. Chem. – 2004. – V. 689, № 9. – P. 1631–1638. DOI: 10.1016/j.jorganchem.2004.02.015
Domasevitch, K.V. Organoantimony(V) Cyanoximates: Synthesis, Spectra and Crystal Struc-tures / K.V. Domasevitch, N.N. Gerasimchuk, A. Mokhir // Inorg. Chem. – 2000. – V. 39, № 6. – P. 1227–1237. DOI: 10.1021/ic9906048.
Syntheses, Characterizations and Crystal Structures of New Organoantimony(V) Complexes with Heterocyclic (S, N) Ligand / C. Ma, Q. Zhang, J. Sun et al. // J. Organomet. Chem. – 2006. – V. 691, № 11. – P. 2567–2574. DOI: 10.1016/j.jorganchem.2006.01.049.
Synthesis, Characterization and Structure of Some Arylantimony Ferrocenylacrylates / J.-S. Li, R.-C. Liu, X.-B. Chi et al. // Inorg. Chim. Acta – 2004. – V. 357. – P. 2176–2180. DOI: 10.1016/j.ica.2003.12.012.
Фторсодержащие карбоксилаты тетраарилсурьмы. Синтез и строение / В.В. Шарутин, О.К. Шарутина, А.Н. Ефремов и др. // Журн. неорг. химии. – 2020. – Т. 65, № 4. – С. 482–486. DOI: 10.31857/S0044457X20040170.
Особенности взаимодействия пентафенилсурьмы с бифункциональными кислотами. строение глутарата бис(тетрафенилсурьмы), сольвата 1,4-циклогександикарбоксилата бис(тетрафенилсурьмы) с бензолом, сольвата 3-гидроксибензоата тетрафенилсурьмы с диоксаном и аддукта 3-гидроксибензоата тетрафенилсурьмы с 3-тетрафенилстибоксибензоатом тетра-фенилсурьмы и толуолом / В.В. Шарутин, О.К. Шарутина, Ю.О. Губанова и др. // Журн. неорг. химии. – 2019. – Т. 64, № 9. – С. 957–964. DOI: 10.1134/S0044457X19090198.
Шарутин, В.В. Синтез и строение сольвата 1,2-дифенилэтандиондиоксимата бис(тетрафенилсурьмы) с толуолом Ph4SbONC(Ph)С(Ph)ONSbPh4 • 2PhCH3 и 1,2-дифенил(2-окси)этаноноксимата тетрафенилсурьмы Ph4SbONC(Ph)CH(Ph)OH / В.В. Шарутин, О.В. Молоко-ва, О.К. Шарутина // Журн. неорг. химии. – 2013. – Т. 58, № 4. – С. 460–467. DOI: 10.7868/S0044457X13040181.
Шарутин, В.В. Синтез и строение пропиолатов три- и тетрафнилсурьмы / В.В. Шарутин, О.К. Шарутина, В.С. Сенчурин // Коорд. химия. – 2014. – Т. 40, № 2. – С. 108–112. DOI: 10.7868/S0132344X14020108.
Dihydroxybenzoic Acids as Polydentate Ligands in Phenylantimony (V) Complexes / V.V. Sharutin, O.K. Sharutina, Y.O. Gubanova et al. // Inorg. Chim. Acta. – 2019. – V. 494. – P. 211–215. DOI: 10.1016/j.ica.2019.05.029
Термохимические свойства Ph4Sb(OC(O)C10H15) и Ph3Sb(OC(O)C10H15)2 / Д.В. Лякаев, А.В. Маркина, Е.В. Хабарова и др. // Журн. физ. химии. – 2018. – Т. 92, № 9. – С. 1384–1389. DOI 10.1134/S0044453718090170.
Шарутин, В.В. Синтез и строение ароксидов тетрафенисурьмы Ph4SbOAr (Ar = C6H4C6H7, C6H2(Br2-2,6)(трет-Bu-4), C6H3(NO2)2-2,4, C6H2(Br2-2,6)(NO2-4)) / В.В. Шарутин, О.К. Шарутина, В.С. Сенчурин // Журн. неорг. химии. – 2017. – Т. 62, № 3. – С. 290–295. DOI: 10.7868/S0044457X17030151.
Шарутин, В.В. Новый способ получения ароксидов хлоротрифенилсурьмы Ph3SbCl(OAr) / В.В. Шарутин, О.К. Шарутина, В.С. Сенчурин // Коорд. химия. – 2016. – Т. 42, № 1. – С. 34–38. DOI: 10.7868/S0132344X15120075.
Синтез и строение γ-фенилацетилацетоната тетрафенилсурьмы / В.В Шарутин, А.П. Пакусина, О.К. Шарутина и др. // Химия и комп. модел. Бутлеровские сообщ. – 2003. – Т. 4, № 1. –С. 34–35.
Новые методы синтеза арокситетраарильных производных сурьмы / В.В. Шарутин, О.К. Шарутина, П.Е. Осипов и др. // Журн. общ. химии. – 2001. – Т. 71, № 6. – С. 1045–1046.
Синтез и строение 2,4,6-трихлорфеноксидов тетра- и трифенилсурьмы / В.В. Шарутин, О.К. Шарутина, В.С. Сенчурин и др. // Журн. общ. химии. – 2016. – Т. 86, № 1. – С. 92–99.
Синтез и строение пентафтор- и пентахлорфеноксидов тетра- и триарилсурьмы / В.В. Шарутин, О.К. Шарутина, А.Н. Ефремов и др. // Журн. неорг. химии. – 2017. – Т. 62, № 10. – С. 1330–1336. DOI: 10.7868/S0044457X17100075.
Кочешков, К.А. Методы элементоорганической химии. Сурьма, висмут / К.А. Кочешков, А.П. Сколдинов, Н.Н. Землянский. – М.: Наука, 1976. – 483 с.
Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Dis-playing Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
OLEX2: Complete Structure Solution, Refinement and Analysis Program / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea et al. // J. Appl. Cryst. – 2009. – V. 42. – P. 339–341. DOI: 10.1107/S0021889808042726.
Тарасевич, Б.Н. ИК-спектры основных классов органических соединений / Б.Н. Тарасевич. – М.: МГУ, 2012. – 54 с.
Инфракрасная спектроскопия органических и природных соединений: учебное пособие / А.В. Васильев, Е.В. Гриненко, А.О. Щукин и др. – СПб.: СПбГЛТА, 2007. – 54 с.
Comparison of Inclusion Properties Between p-Tert-butylcalix[4]arene and p-tert-Butylthiacalix[4]arene towards Primary Alcohols in Crystals / N. Morohashi, K. Nanbu, A. Tonosaki et al. // Cryst. Eng. Comm. – 2015. – V. 17, № 26. – P. 4799–4808. DOI: 10.1039/C5CE00370A.
A Novel One-dimensional Coordination Polymer Capturing Hydrated Co(II) Cations /
D.-Q. Yuan, M.-Y. Wu, F.-L. Jiang et al. // J. Mol. Struct. – 2008. – V. 877, № 1–3. – P. 132–137. DOI: 10.1016/j.molstruc.2007.07.029.
Bi, Y. Assembly of Supramolecular Compounds with Water-Soluble Calix[4]arenes / Y. Bi, W. Liao, H. Zhang // Cryst. Growth Des. – 2008. – V. 8, № 10. – P. 3630–3635. DOI: 10.1021/cg800177m.
Thiacalix[4]arene-Based Three-Dimensional Coordination Polymers Incorporating Neutral Bridging Coligands / K. Kim, S. Park, K.-M. Park et al. // Cryst. Growth Des. – 2011. – V. 11, № 9. – P. 4059–4067. DOI: 10.1021/cg2006315.
Unique Inclusion Properties of Crystalline Powder p-tert-Butylthiacalix[4]arene toward Alcohols and Carboxylic Acids / N. Morohashi, S. Noji, H. Nakayama et al. // Org. Lett. – 2011. – V. 13, № 13. – P. 3292–3295. DOI: 10.1021/ol200506p.
Refbacks
- There are currently no refbacks.
 
