Синтез и строение ионных комплексов [Ph3PEt][Au(CN)2Cl2] и [Ph3PCH2CH2Br][Au(CN)2Br2]
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Batten, S.R. Coordination Polymers and Metal–Organic Frameworks: Materials by Design / S.R. Batten, N.R. Champness // Phil. Trans. R. Soc., A. – 2017. – V. 375, no. 2084. – ID 20160025. DOI: 10.1098/rsta.2016.0032.
The Chemistry and Applications of Metal-Organic Frameworks / H. Furukawa, K.E. Cordova, M. O’Keeffe et al. // Science. – 2013. – V. 341, no. 6149. – ID 1230444. DOI: 10.1126/science.1230444.
Topological Motifs in Cyanometallates: from Building Units to Three-Periodic Frameworks / E.V. Alexandrov, A.V. Virovets, V.A. Blatov et al. // Chem. Rev. – 2015. – V. 115, № 22. – P. 12286–12319. DOI: 10.1021/acs.chemrev.5b00320.
Kumar, K. Effect of Noble Metals on Luminescence and Single-Molecule Magnet Behavior in the Cyanido-Bridged Ln–Ag and Ln–Au (Ln = Dy, Yb, Er) Complexes / K. Kumar, O. Stefańczyk, S. Chorazy // Inorg. Chem. – 2019. – V. 58, no. 9. – P. 5677–5687. DOI: 10.1021/acs.inorgchem.8b03634.
Photophysical Investigation of Silver/Gold Dicyanometallates and Tetramethylammonium Networks: an Experimental and Theoretical Investigation / A.D. Nicholas, R.M. Bullard, R.D. Pike et al. // Eur. J. Inorg. Chem. – 2019. – V. 2019, no. 7. – P. 956–962. DOI: 10.1002/ejic.201801407.
Cyanide‐Assembled d10 Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid‐State Luminescence / A. Belyaev, T. Eskelinen, T. Dau et al. // Chem. Eur. J. – 2017. – V. 24, no. 6. – P. 1404–1415. DOI: 10.1002/chem.201704642.
Polymorphism of Zn[Au(CN)2]2 and Its Luminescent Sensory Response to NH3 Vapor / M.J. Katz, T. Ramnial, H.-Z. Yu et al. // J. Am. Chem. Soc. – 2008. – V. 130, no. 32. – P. 10662–10673. DOI: 10.1021/ja801773p.
Ovens, J.S. Designing Tunable White‐Light Emission from an Aurophilic CuI/AuI Coordination Polymer with Thioether Ligands / J.S. Ovens, R.R. Christensen, D.B. Leznoff // Chem. Eur. J. – 2016. – V. 22, no. 24. – P. 8234–8239. DOI: 10.1002/chem.201505075.
The Use of Polarizable [AuX2(CN)2]− (X = Br, I) Building Blocks Toward the Formation of Birefringent Coordination Polymers / J.S. Ovens, A.R. Geisheimer, A.A. Bokov et al. // Inorg. Chem. – 2010. – V. 49, no. 20. – P. 9609–9616. DOI: 10.1021/ic101357y.
Katz, M.J. Highly Birefringent Cyanoaurate Coordination Polymers: The Effect of Polarizable C−X Bonds (X = Cl, Br) / M.J. Katz, D.B. Leznoff // J. Am. Chem. Soc. – 2009. – V. 131, no. 51. – P. 18435–18444. DOI: 10.1021/ja907519c.
Thompson, J.R. Birefringent, Emissive Cyanometallate-Based Coordination Polymer Materials Containing Group(II) Metal-Terpyridine Building Blocks / J.R. Thompson, K.A.S. Goodman-Rendall, D.B. Leznoff // Polyhedron. – 2016. – V. 108. – P. 93–99. DOI: 10.1016/j.poly.2015.12.026.
Structural Design Parameters for Highly Birefringent Coordination Polymers / J.R. Thompson, M.J. Katz, V.E. Williams et al. // Inorg. Chem. – 2015. – V. 54, no. 13. – P. 6462–6471. DOI: 10.1021/acs.inorgchem.5b00749.
Lefebvre, J. Cu[Au(CN)2]2(DMSO)2: Golden Polymorphs That Exhibit Vapochromic
Behavior / J. Lefebvre, R.J. Batchelor, D.B. Leznoff // J. Am. Chem. Soc. – 2004. – V. 126, no. 49. – P. 16117–16125. DOI: 10.1021/ja049069n.
Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni) / J. Lefebvre J, J.L. Korčok, M.J. Katz et al. // Sensors. – 2012. – V. 12, no. 3. – P. 3669–3692. DOI: 10.3390/s120303669.
Varju, B.R. Mixed Cu(i)/Au(i) Coordination Polymers as Reversible Turn-on Vapoluminescent Sensors for Volatile Thioethers / B.R. Varju, J.S. Ovens, D.B. Leznoff // Chem. Commun. – 2017. – V. 53, no. 48. – P. 6500–6503. DOI: 10.1039/C7CC03428H.
Ovens, J.S. Raman Detected Sensing of Volatile Organic Compounds by Vapochromic Cu[AuX2(CN)2]2 (X = Cl, Br) Coordination Polymer Materials / J.S. Ovens, D.B. Leznoff // Chem.
Mater. – 2015. – V. 27, no. 5. – P. 1465–1478. DOI: 10.1021/cm502998w.
Ovens, J.S. Thermal Expansion Behavior of MI[AuX2(CN)2]-Based Coordination Polymers (M = Ag, Cu; X = CN, Cl, Br) / J.S. Ovens, D.B. Leznoff // Inorg. Chem. – 2017. – V. 56, no. 13. – P. 7332–7343. DOI: 10.1021/acs.inorgchem.6b03153.
Ovens, J.S. Probing Halogen⋯Halogen Interactions via Thermal Expansion Analysis /
J.S. Ovens, D.B. Leznoff // CrystEngComm. – 2018. – V. 20, no. 13. – P. 1769–1773 DOI: 10.1039/C7CE02167D.
Lefebvre, J. Synthesis, Structure and Magnetic Properties of 2-D and 3-D [cation]{M[Au(CN)2]3} (M = Ni, Co) Coordination Polymers / J. Lefebvre, D. Chartrand, D.B. Leznoff // Polyhedron. – 2007. – V. 26, no. 9–11. – P. 2189–2199. DOI: 10.1016/j.poly.2006.10.045.
Magnetic Properties of Isostructural M(H2O)4[Au(CN)4]2-based Coordination Polymers (M = Mn, Co, Ni, Cu, Zn) by SQUID and μSR Studies / A.R. Geisheimer, W. Huang, V. Pacradouni et al // Dalton Trans. – 2011. – V. 40, no. 29. – P. 7505–7516. DOI: 10.1039/C0DT01546F.
Lefebvre, J. A New Basic Motif in Cyanometallate Coordination Polymers: Structure and Magnetic Behavior of M(μ‐OH2)2[Au(CN)2]2 (M = Cu, Ni) / J. Lefebvre, F. Callaghan, M.J. Katz et al. // Chem. Eur. J. – 2006. – V. 12, no. 26. – P. 6748–6761. DOI: 10.1002/chem.200600303.
Magnetic Frustration and Spin Disorder in Isostructural M(μ-OH2)2[Au(CN)2]2 (M = Mn, Fe, Co) Coordination Polymers Containing Double Aqua-Bridged Chains: SQUID and μSR Studies / J. Lefebvre, P. Tyagi, S. Trudel et al. // Inorg. Chem. – 2008. – V. 48, no. 1. – P. 55–67. DOI: 10.1021/ic801094m.
Шевченко, Д.П. Строение дигалогенодицианоауратных комплексов [Ph3PR][Au(CN)2Hal2], Hal = Cl, R = Me, СH2Ph; Hal = Br, R = цикло-C6H11; Hal = I, R = Ph / Д.П. Шевченко, А.Е. Хабина // Вестник ЮУрГУ. Серия «Химия». – 2021. – Т. 13, № 1. – С. 58–67. DOI: 10.14529/chem210106.
Синтез и строение дицианодибромоаурата метилтрифенилфосфония [Ph3PMe][Au(CN)2Br2] / А.Н. Ефремов, В.В. Шарутин, О.К. Шарутина и др. // Изв. вузов. Химия и хим. технология. – 2020. – Т. 63, № 3. – С. 10–15. DOI: 10.6060/ivkkt.20206303.6097.
Синтез и строение комплексов золота [Ph3PR]+[Au(CN)2I2-trans]−, R = Et, CH2Ph, Ph / В.В. Шарутин, О.К. Шарутина, Н.М. Тарасова и др. // Изв АН. Сер. хим. – 2020. – Т. 69, № 10. – С. 1892–1896).
Дицианодибромоаураты алкилтрифенилфосфония [Ph3PAlk][Au(CN)2Br2], Alk = CH2C6H4(OH)-2, CH2C6H11-cyclo, CH2Ph, CH2C6H4CN-4 / В.В. Шарутин, О.К. Шарутина, Н.М. Тарасова и др. // Журн. неорг. химии. – 2020. – Т. 65, № 2. – С. 171–178. DOI: 10.31857/S0044457X20020154.
Шарутин, В.В. Строение минорных продуктов реакций дииододицианоаурата калия с галогенидами тетраорганилфосфора и -сурьмы // В.В. Шарутин / Вестник ЮУрГУ. Серия «Химия». – 2020. – Т. 12, № 2. – С. 74–84. DOI: 10.14529/chem200208.
Синтез и строение дицианодииодоауратов тетра(пара-толил)сурьмы [p-Tol4Sb][Au(CN)2I2] и алкилтрифенилфосфония [Ph3PAlk][Au(CN)2I2], Alk = Me, CH2CN / В.В. Шарутин, О.К. Шарутина, А.Н. Ефремов и др. // Коорд. химия. – 2020. – Т. 46, № 9. – С. 554–561. DOI: 10.31857/S0132344X20090030.
Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
OLEX2: Complete Structure Solution, Refinement and Analysis Program / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea et al. // J. Appl. Cryst. – 2009. – V. 42. – P. 339–341. DOI: 10.1107/S0021889808042726.
Преч, Э. Определение строения органических соединений / Э. Преч, Ф. Бюльманн, К. Аффольтер. – М.: Мир, 2006. – 440 с.
Covalent Radii Revisited / B. Cordero, V. Gómez, A.E. Platero-Prats et al. // Dalton Trans. – 2008. – no. 21. – P. 2832–2838. DOI: 10.1039/B801115J.
Consistent van der Waals Radii for the Whole Main Group / M. Mantina, A.C. Chamberlin, R. Valero et al. // J. Phys. Chem. A. – 2009. – V. 113, no. 19. – P. 5806–5812. DOI: 10.1021/jp8111556.
Ссылки
- На текущий момент ссылки отсутствуют.