Система учета посещаемости студентов на основе распознавания лиц
Аннотация
В настоящее время одним из значимых факторов для повышения качества подготовки специалистов является учет посещаемости студентов. Данный процесс может быть автоматизирован. В статье предлагается подход к построению системы учета посещаемости студентов на основе технологии распознавания лиц, которая позволяет идентифицировать множество людей одновременно без прямого контакта с ними и без использования дорогостоящего оборудования. Данный подход основан на сверточных нейронных сетях RetinaFace и ResNet, выбранных на основе обзора современных методов распознавания лиц, представленного в статье. Архитектура нашей системы учета посещаемости дополнена процедурами предобработки изображений, которые по предложенной нами методике, основанной на мере BREN, проверяют качество изображения и при необходимости применяют к изображению алгоритмы для уменьшения шума, повышения резкости, увеличения яркости и выравнивания цветов. Представлены результаты вычислительных экспериментов, показавшие более высокую эффективность предложенного подхода по сравнению с аналогами.
Ключевые слова
Полный текст:
PDFЛитература
Zarubin V.I., Bibalova S.A. Attendance of classes at the university as a factor of the effectiveness of training modern specialists. Bulletin of the Maikop State Technological University. 2017. No. 2. P. 3–6. (in Russian)
Starovoitov V.V., Starovoitov V.F. Comparative analysis of standardfree measures for assessing the quality of digital images. System Analysis and Applied Informatic. 2017. No. 1. P. 24–32. (in Russian) DOI: 10.21122/2309-4923-2017-1-24-32.
Strueva A.Yu., Ivanova E.V. Certificate of registration of a computer program “Library of routines for face recognition in personnel activity control systems” № RU 2021669594, 01.12.2021, copyright holder: FSAEIHE SUSU (NRU). (in Russian)
Furashev D.A., Favorskaya M.Y. Methods for improving the quality of images. Actual problems of aviation and astronautics. 2010. Vol. 1, no. 6. P. 383–384. (in Russian)
Cortes C., Vapnik V. Support-vector networks. Machine Learning. 1995. No. 20. P. 273–297. DOI: 10.1007/BF00994018.
Dalal N., Triggs B. Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR’05, San Diego, CA, USA, June 20–25, 2005. P. 1–8. DOI: 10.1109/CVPR.2005.177.
Deng J., Zafeririou S. Arcface for disguised face recognition. 17th IEEE/CVF International Conference on Computer VisionWorkshop, ICCVW 2019, Seoul, October 27–28, 2019. P. 485–493. DOI: 10.1109/ICCVW.2019.00061.
Dlib C++ Library. Documentation. URL: http://dlib.net/ (accessed: 21.08.2021).
Indyk P., Wagner T. Near-optimal (euclidean) metric compression. Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’17, Barcelona, Spain, January 16–19, 2017. P. 710–723. DOI: 10.1137/1.9781611974782.45.
He K., Zhang X., Ren S., Sun J. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016. P. 770–778. DOI: 10.1109/CVPR.2016.90
Kalinovsky I., Spitsyn V. Review and Testing of Frontal Face Detectors. Computer Optics. 2016. Vol. 40, no. 1. P. 99–111. DOI: 10.18287/2412-6179-2016-40-1-99-111.
Keras. Documentation. URL: https://keras.io/guides/ (accessed: 21.08.2021).
Khan S., Akram A., Usman N. Real Time Automatic Attendance System for Face Recognition Using Face API and OpenCV. Wireless Personal Communications. 2020. Vol. 113. P. 469–480. DOI: 10.1007/s11277-020-07224-2.
Kortli Y., Jridi M., Atri M. Face Recognition Systems: A Survey. Sensors. 2020. Vol. 20, no. 2. P. 1–36. DOI: 10.3390/s20020342.
Li H., Lin Z., Brandt J., Shen X., Hua G. Efficient boosted exemplar-based face detection. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, June 23–28, 2014. P. 1843–1850. DOI: 10.1109/CVPR.2014.238.
Microsoft Azure face. Documentation. URL: https://docs.microsoft.com/enus/azure/cognitive-services/face/ (accessed: 01.09.2021).
Mothwa L., Tapamo J.-R., Mapayi T. Conceptual Model of the Smart Attendance Monitoring System Using Computer Vision. The 14th International Conference on Signal Image Technology & Internet Based Systems, SITIS 2019, Las Palmas de Gran Canaria, Spain, November 26–29, 2018. P. 229–234. DOI: 10.1109/SITIS.2018.00042.
Nurkhamid N., Setialana P., Jati H., Wardani R. Intelligent Attendance System with Face Recognition using the Deep Convolutional Neural Network Method. Journal of Physics: Conference Series. 2021. Vol. 1737, no. 1. P. 1–9. DOI: 10.1088/1742-6596/1737/1/012031.
OpenCV. Documentation. URL: https://docs.opencv.org/ (accessed: 01.09.2021).
Patel S., Kumar R. Face Recognition based smart attendance system using IO. International Journal of Computer Sciences and Engineering. 2018. Vol. 6, no. 5. P. 871–877. DOI: 10.26438/ijcse/v6i5.871877.
Pertuz S., Puig D., Garcia M.A. Analysis of focus measure operators for shape-from-focus. Pattern Recognition. 2013. Vol. 46. no. 5. P. 1415–1432. DOI: 10.1016/j.patcog.2012.11.0117.
Redmon J., Farhadi A. YOLOv3: An Incremental Improvement. CoRR. 2018. Vol. abs/1804.02767. URL: http://arxiv.org/abs/1804.02767
Samal D.B., Starovoitov V.V. A geometric approach to face recognition. Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, NSIP’99, Antalya, Turkey, June 20–23, 1999. P. 1–5.
Son N.T., Anh B.N., Ban T.Q. et al. Implementing CCTV-Based Attendance Taking Support System Using Deep Face Recognition: A Case Study at FPT Polytechnic College. Symmetry. 2020. Vol. 12, no. 307. DOI: 10.3390/sym12020307.
TensorFlow. URL: https://www.tensorflow.org/ (accessed: 01.09.2021).
Viola P., Jones M.J. Robust Real-Time Face Detection. International Journal of Computer Vision. 2004. Vol. 57, no. 2. P. 137–154. DOI: 10.1023/B:VISI.0000013087.49260.fb.
Wang M., Deng W. Deep Face Recognition: A Survey. Neurocomputing. 2021. Vol. 429. P. 215–244. DOI: 10.1016/j.neucom.2020.10.081.
Winarno E., Hadikurniawati W., Nirwanto A.A. Multi-View Faces Detection Using Viola–Jones Method. Journal of Physics Conf. Series. 2018. Vol. 1114, no. 1. DOI: 10.1088/1742-6596/1114/1/012068.
Wu H., Cao Y., Wei H., Tian Z. Face Recognition Based on Haar Like and Euclidean Distance. Journal of Physics: Conference Series. 2021. Vol. 1813. P. 1–7. DOI: 10.1088/1742-6596/1813/1/012036.
Yang S., Luo P., Loy C.C., Tang X. WIDER FACE: A Face Detection Benchmark. 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016. P. 5525–5533. DOI: 10.1109/CVPR.2016.596.
Zhu X., Ramanan D. Face detection, pose estimation, and landmark localization in the wild. IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16–21, 2012. P. 2879–2886. DOI: 10.1109/CVPR.2012.6248014.
Zhang K., Zhang Z., Li Z., Qiao Y. Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks. IEEE Signal Processing Letters. 2016. Vol. 3, no. 10. P. 1499–1503. DOI: 10.1109/LSP.2016.2603342.
DOI: http://dx.doi.org/10.14529/cmse210404