Сравнение целевых функций в задаче Прони для аппроксимации данных измерений
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Marple S.L. Digital spectral analysis: with applications. USA: Prentice-Hall, 1986. 492 p.
Berdyshev V.I., Petrak L.V. Function approximation, compression of numerical information, applications. Ekaterinburg: UB RAN, 1999. 296 p. (in Russian)
Householder A.S. On Prony’s method of fitting exponential decay curves and multiple-hit survival curves. Oak Ridge National Lab. Report ORNL–455. 1950. Oak Ridge, Tennessee. URL: http://www.technicalreports.org/trail/detail/11105 (accessed: 15.12.2021).
Egorshin A.O. Least squares method and the “fast” algorithms in variational problems of identification and filtration (VI method). Avtometriya. 1988. No. 1. P. 30–42. (in Russian). URL: http://www.iae.nsk.su/images/stories/5_Autometria/5_Archives/1988/1/30-42.pdf (accessed: 15.12.2021).
Fuller W.A. Measurement Error Models. New York: Wiley, 1987. 440 p.
Lomov A.A. On Quantitative A Priori Measures of Identifiability of Coefficients of Linear Dynamic Systems. Journal of Computer and System Sciences International. 2011. Vol. 50, no. 1. P. 1–13. DOI: 10.1134/S106423071101014X.
Lomov A.A., Fedoseev A.V. Comparison of Parameter Identification Methods for Linear Dynamic Systems Under Mixed Noise. Springer Journal of Mathematical Sciences. 2021. Vol. 253, no. 3. P. 407–418. DOI: 10.1007/s10958-021-05238-0.
Lanczos C. Applied analysis. USA: Prentice Hall, 1956. 539 p.
Lomov A.A. On Convergence of Computational Algorithms for a Variational Problem of Identifying the Coefficients of Difference Equations. Journal of Applied and Industrial Mathematics. 2020. Vol. 14, no. 3. P. 541–554. DOI: 10.1134/S1990478920030138.
de Prony G. Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l’alkool, à différentes températures. Journal de l’école Polytechnique. 1795. Vol. 1, no. 22. P. 24–76. URL: http://users.polytech.unice.fr/~leroux/PRONY.pdf (accessed: 15.12.2021).
Mitrofanov G.M., Priimenko V.I. Basics and Applications of the Prony filtering. Tehnologii seismorazvedki. 2011. No. 3. P. 93–108. (in Russian)
Kolomeytseva A.V., Mishugova G.V., Mool A.P., Ryabykh G.Yu. Application of the wavelet transform and the Prony method for the identification of biogenic signals. Vestnik DGTU. 2010. Vol. 10, no. 4. P. 455–465. (in Russian)
Bjorck A. Numerical methods for least squares problems. USA: SIAM, 1996. 425 p. DOI: 10.1137/1.9781611971484.ch1.
Keller I., Plonka G. Modifications of Prony’s Method for the Recovery and Sparse Approximation with Generalized Exponential Sums. Approximation Theory XVI / ed. by G.E. Fasshauer, M. Neamtu, L.L. Schumaker. Cham: Springer International Publishing, 2021. P. 123–152. DOI: 10.1007/978-3-030-57464-2_7.
Osborne M.R. A class of nonlinear regression problems. Data representation / ed. by R.S. Anderssen, M.R. Osborne. St. Lucia: University of Queensland Press, 1970. P. 94–101.
Egorshin A.O., Budyanov V.P. Smoothing of signals and estimation of dynamic parameters in automatic systems using a digital computer. Avtometriya. 1973. No. 1. P. 78–82. (in Russian) URL: https://www.iae.nsk.su/images/stories/5_Autometria/5_Archives/1973/1/78-82.pdf (accessed: 15.12.2021).
Bryson A.E., Ho Y.-C. Applied Optimal Control: Optimization, Estimation and Control. Waltham, MA: Blaisdell. 1969. 481 p.
Egorshin A.O. On discretization of linear differential equations. Bulletin of the South Ural State University. Series: Mathematiсal Modelling, Programming & Computer Software. 2012. Vol. 40(299), no. 14. P. 59–72. (in Russian) URL: https://mmp.susu.ru/article/en/179 (accessed: 15.12.2021).
DOI: http://dx.doi.org/10.14529/cmse220202