Возможности параллелизма при идентификации квазилинейного рекуррентного уравнения
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Li Q., Wang J., Zhang H. A wind speed interval forecasting system based on constrained lower upper bound estimation and parallel feature selection. Knowl. Based Syst. 2021. Vol. 231. DOI: 10.1016/j.knosys.2021.107435.
Khashei M., Chahkoutahi F. A comprehensive low-risk and cost parallel hybrid method for electricity load forecasting. Comput. Ind. Eng. 2021. Vol. 155. DOI: 10.1016/j.cie.2021.107182.
Supuwiningsih N.N., Kadeksukerti N., Putra A., Dewanti P. Forecasting of Agricultural Production Results in South Denpasar Using Quadratic Trend Method Based GIS. International Journal of Engineering Technologies and Management Research. 2018. Vol. 5, no. 2. DOI: 10.5281/zenodo.1186523.
Hamdi F., Raby H., Hakim G., et al. A Generalized Mechanistic Model for Assessing and Forecasting the Spread of the COVID-19 Pandemic. IEEE Access. 2021. Vol. 9. P. 13266–13285. DOI: 10.1109/ACCESS.2021.3051929.
Dash S., Chakraborty C., Giri S.K., et al. BIFM: Big-Data Driven Intelligent Forecasting Model for COVID-19. IEEE Access. 2021. Vol. 9. P. 97505–97517. DOI: 10.1109/ACCESS.2021.3094658.
Corpas-Burgos F., Martinez-Beneito M.A. An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting. Mathematics. 2021. Vol. 9, no. 4. Article 384. DOI: 10.3390/math9040384.
Panyukov A.V., Tyrsin A.N. Stable Parametric Identification of Vibratory Diagnostics Objects. Journal of Vibroengineering. 2008. Vol. 10, no. 2. P. 142–146. URL: https://www.extrica.com/article/10181.
Makarovskikh T., Abotaleb M. Comparison Between Two Systems for Forecasting Covid-19 Infected Cases. IFIP Advances in Information and Communication Technology. 2021. Vol. 616. P. 107–114. DOI: 10.1007/978-3-030-86582-5_10.
Sirotin D.V. Neural network approach to forecasting the cost of ferroalloy products. Izvestiya. Ferrous Metallurgy. 2020. Vol. 63, no. 1. P. 78–83. DOI: 10.17073/0368-0797-2020-1-78-83.
Yakubova D.M. Econometric models of development and forecasting of black metallurgy of Uzbekistan. Asian Journal of Multidimensional Research (AJMR). 2019. Vol. 8, no. 5. P. 310–314. DOI: 10.5958/2278-4853.2019.00205.2.
Neto A.B.S., Ferreira T.A.E., Batista M.C.M., Firmino P.R.A. Studying the Performance of Cognitive Models in Time Series Forecasting. Revista de Informatica Teorica e Aplicada. 2020. Vol. 27, no. 1. P. 83–91. DOI: 10.22456/2175-2745.96181.
Panchal R., Kumar B. Forecasting industrial electric power consumption using regression based predictive model. Recent Trends in Communication and Electronics. 2021. DOI: 10.1201/9781003193838-26.
Panyukov A.V., Mezaal Y.A. Improving of the Identification Algorithm for a Quasilinear Recurrence Equation. Cham, 2020. DOI: 10.1007/978-3-030-65739-0_2.
Makarovskikh T., Panyukov A., Abotaleb M. Generalized least deviation method for identification of quasi-linear autoregressive model. URL: https://github.com/tmakarovskikh/GLDMPredictor.git (accessed: 27.07.2022).
Pan J., Wang H., Qiwei Y. Weighted Least Absolute Deviations Estimation for ARMA Models with Infinite Variance. Econometric Theory. 2007. Vol. 23, no. 3. P. 852–879.
Panyukov A.V., Mezaal Y.A. Stable estimation of autoregressive model parameters with exogenous variables on the basis of the generalized least absolute deviation method. IFACPapersOnLine. 2018. Vol. 51, no. 11. P. 1666–1669. DOI: 10.1016/j.ifacol.2018.08.217.
Panyukov A.V. Scalability of Algorithms for Arithmetic Operations in Radix Notation. Reliable Computing. 2015. Vol. 19. P. 417–434. URL: http://interval.louisiana.edu/reliable-computing-journal/volume-19/reliable-computing-19-pp-417-434.pdf.
Abotaleb M.S.A., Makarovskikh T. Analysis of Neural Network and Statistical Models Used for Forecasting of a Disease Infection Cases. 2021 Int. Conf. on Information Technology and Nanotechnology (ITNT). 2021. P. 1–7. DOI: 10.1109/ITNT52450.2021.9649126.
DOI: http://dx.doi.org/10.14529/cmse230404