Поиск аномалий в сенсорных данных цифровой индустрии с помощью параллельных вычислений
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Blázquez-García A., Conde A., Mori U., Lozano J.A. A Review on Outlier/Anomaly Detection in Time Series Data. ACM Comput. Surv. 2021. Vol. 54, no. 3. P. 56:1–56:33. DOI: 10.1145/3444690.
Kumar S., Tiwari P., Zymbler M.L. Internet of Things is a revolutionary approach for future technology enhancement: a review. J. Big Data. 2019. Vol. 6. P. 111. DOI: 10.1186/s40537-019-0268-2.
Zymbler M.L., Kraeva Y.A., Latypova E.A., et al. Cleaning Sensor Data in Intelligent Heating Control System. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2021. Vol. 10, no. 3. P. 16–36. (in Russian) DOI: 10.14529/cmse210302.
Ivanov S.A., Nikolskaya K.Y., Radchenko G.I., et al. Digital Twin of a City: Concept Overview. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2020. Vol. 9, no. 4. P. 5–23. (in Russian) DOI: 10.14529/cmse200401.
Keogh E.J., Lin J., Fu A.W. HOT SAX: efficiently finding the most unusual time series subsequence. Proceedings of the 5th IEEE International Conference on Data Mining (ICDM 2005), Houston, Texas, USA, November 27-30, 2005. IEEE Computer Society, 2005. P. 226–233. DOI: 10.1109/ICDM.2005.79.
Yankov D., Keogh E.J., Rebbapragada U. Disk aware discord discovery: Finding unusual time series in terabyte sized datasets. Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007), October 28-31, 2007, Omaha, Nebraska, USA. 2007. P. 381–390. DOI: 10.1109/ICDM.2007.61.
Chandola V., Cheboli D., Kumar V. Detecting anomalies in a time series database. Retrieved from the University of Minnesota Digital Conservancy. 2009. URL: https://hdl.handle.net/11299/215791 (accessed: 12.04.2022).
Kraeva Y., Zymbler M. A parallel discord discovery algorithm for a graphics processor. Pattern Recognition and Image Analysis. 2023. Vol. 33, no. 2. P. 101–113. DOI: 10.1134/S1054661823020062.
Mueen A., Nath S., Liu J. Fast approximate correlation for massive time-series data. Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010. ACM, 2010. P. 171–182. DOI: 10.1145/1807167.1807188.
Han Z., Gao P., Wan F. Research on Data Mining and Visualization Technology. CONFCDS 2021: The 2nd International Conference on Computing and Data Science, Stanford, CA, USA, January 28-30, 2021. ACM, 2021. P. 71:1–71:4. DOI: 10.1145/3448734.3450801.
Yeh C.M., Zhu Y., Ulanova L., et al. Time series joins, motifs, discords and shapelets: A unifying view that exploits the matrix profile. Data Min. Knowl. Discov. 2018. Vol. 32, no. 1. P. 83–123. DOI: 10.1007/s10618-017-0519-9.
Zimmerman Z., Kamgar K., Senobari N.S., et al. Matrix Profile XIV: Scaling Time Series Motif Discovery with GPUs to Break a Quintillion Pairwise Comparisons a Day and Beyond. Proceedings of the ACM Symposium on Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019. ACM, 2019. P. 74–86. DOI: 10.1145/3357223.3362721.
Chen X., Chen Y., He Z. Urban Traffic Speed Dataset of Guangzhou, China. 2018. DOI: 10.5281/zenodo.1205229.
Bilenko R.V., Dolganina N.Y., Ivanova E.V., Rekachinsky A.I. High-performance Computing Resources of South Ural State University. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2022. Vol. 11, no. 1. P. 15–30. (in Russian) DOI: 10.14529/cmse220102.
Rosenthal D. CVC Technology on Hot and Cold Strip Rolling Mills. Rev. Met. Paris. 1988. Vol. 85, no. 7. P. 597–606. DOI: 10.1051/metal/198885070597.
Basalaev A.A. Automated Energy Management for Heat and Power System of University Campus. Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control, Radio Electronics. 2015. Vol. 15, no. 4. P. 26–32. (in Russian) DOI: 10.14529/ctcr150403.
DOI: http://dx.doi.org/10.14529/cmse230202