Intermediate Fusion Approach for Pneumonia Classification on Imbalanced Multimodal Data
Аннотация
Ключевые слова
Полный текст:
PDF (English)Литература
COVID-19 and vascular disease. EBioMedicine. 2020. Aug. Vol. 58. P. 102966. DOI: 10.1016/j.ebiom.2020.102966.
Soenksen L.R., Ma Y., Zeng C., et al. Code for generating the HAIM multimodal dataset of MIMIC-IV clinical data and x-rays. 2022. DOI: 10.13026/3F8D-QE93.
Qiu S., Chang G.H., Panagia M., et al. Fusion of deep learning models of MRI scans, Mini–Mental State Examination, and logical memory test enhances diagnosis of mild cognitive impairment. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. 2018. Jan. Vol. 10, no. 1. P. 737–749. DOI: 10.1016/j.dadm.2018.08.013.
Parcalabescu L., Frank A. MM-SHAP: A Performance-agnostic Metric for Measuring Multimodal Contributions in Vision and Language Models Tasks. 2022. DOI: 10.48550/ARXIV.2212.08158.
Bakalos N., Voulodimos A., Doulamis N., et al. Fusing RGB and Thermal Imagery with Channel State Information for Abnormal Activity Detection Using Multimodal Bidirectional LSTM. Cyber-Physical Security for Critical Infrastructures Protection. Springer International Publishing, 2021. P. 77–86. DOI: 10.1007/978-3-030-69781-5_6.
Sarada N., Rao K.T. A Neural Network Architecture Using Separable Neural Networks for the Identification of “Pneumonia” in Digital Chest Radiographs. International Journal of e-Collaboration. 2021. Jan. Vol. 17, no. 1. P. 89–100. DOI: 10.4018/ijec.2021010106.
Vashisht S., Sharma B., Lamba S. Using Support Vector Machine and Generative Adversarial Network for Multi-Classification of Pneumonia Disease. 2023 4th International Conference for Emerging Technology (INCET). IEEE, May 2023. DOI: 10.1109/incet57972.2023.10170180.
Yadav P., Menon N., Ravi V., Vishvanathan S. Lung-GANs: Unsupervised Representation Learning for Lung Disease Classification Using Chest CT and X-Ray Images. IEEE Transactions on Engineering Management. 2023. Aug. Vol. 70, no. 8. P. 2774–2786. DOI: 10.1109/tem.2021.3103334.
Fang M., Peng S., Liang Y., et al. A Multimodal Fusion Model with Multi-Level Attention Mechanism for Depression Detection. SSRN Electronic Journal. 2022. DOI: 10.2139/ssrn.4102839.
Cai S., Wakaki R., Nobuhara S., Nishino K. RGB Road Scene Material Segmentation. Computer Vision – ACCV 2022. Springer Nature Switzerland, 2023. P. 256–272. DOI: 10.1007/978-3-031-26284-5_16.
Msuya H., Maiseli B.J. Deep Learning Model Compression Techniques: Advances, Opportunities, and Perspective. Tanzania Journal of Engineering and Technology. 2023. June. Vol. 42, no. 2. P. 65–83. DOI: 10.52339/tjet.v42i2.853.
Pereira R.M., Costa Y.M., Jr. C.N.S. MLTL: A multi-label approach for the Tomek Link undersampling algorithm. Neurocomputing. 2020. Mar. Vol. 383. P. 95–105. DOI: 10.1016/j.neucom.2019.11.076.
Tang B., He H., Zhang S. MCENN: A variant of extended nearest neighbor method for pattern recognition. Pattern Recognition Letters. 2020. May. Vol. 133. P. 116–122. DOI: 10.1016/j.patrec.2020.01.015.
Xin L., Mou T. Research on the Application of Multimodal-Based Machine Learning Algorithms to Water Quality Classification. Wireless Communications and Mobile Computing / ed. by C.-H. Wu. 2022. July. Vol. 2022. P. 1–13. DOI: 10.1155/2022/9555790.
Aridas C.K., Karlos S., Kanas V.G., et al. Uncertainty Based Under-Sampling for Learning Naive Bayes Classifiers Under Imbalanced Data Sets. IEEE Access. 2020. Vol. 8. P. 2122–2133. DOI: 10.1109/access.2019.2961784.
Li Y., Branco P., Zhang H. Imbalanced Multimodal Attention-Based System for Multiclass House Price Prediction. Mathematics. 2022. Dec. Vol. 11, no. 1. P. 113. DOI: 10.3390/math11010113.
Mathew R.M., Gunasundari R. An Oversampling Mechanism for Multimajority Datasets using SMOTE and Darwinian Particle Swarm Optimisation. International Journal on Recent and Innovation Trends in Computing and Communication. 2023. Mar. Vol. 11, no. 2. P. 143–153. DOI: 10.17762/ijritcc.v11i2.6139.
Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002. Vol. 16. P. 321–357. DOI: 10.1613/jair.953.
Siriseriwan W., Sinapiromsaran K. Adaptive neighbor synthetic minority oversampling technique under 1NN outcast handling. Songklanakarin Journal of Science and Technology (SJST). 2017. Vol. 39. P. 5. DOI: 10.14456/SJST-PSU.2017.70.
Alhudhaif A. A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach. PeerJ Computer Science. 2021. May. Vol. 7. P. 523. DOI: 10.7717/peerj-cs.523.
He H., Bai Y., Garcia E.A., Li S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. Proceedings of the International Joint Conference on Neural Networks, IJCNN 2008, part of the IEEE World Congress on Computational Intelligence, WCCI 2008, Hong Kong, China, June 1-6, 2008. IEEE, 2008. P. 1322–1328. DOI: 10.1109/IJCNN.2008.4633969.
DOI: http://dx.doi.org/10.14529/cmse230302