Гибридный алгоритм распознавания строений на спутниковых снимках на основе метода жука и алгоритма исключения областей

Ирина Владимировна Баранова, Степан Валентинович Гилин

Аннотация


В статье предлагается новый метод распознавания строений на спутниковых снимках. Представленный метод является гибридным, он основан на алгоритме исключения областей и методе жука. Алгоритм исключения областей представляет собой хорошо известный и эффективный способ сегментации изображения на регионы схожих пикселей по различным признакам: цвет, текстура, яркость, форма и т.д. Метод жука — классический метод контурного анализа, выполняющий последовательное вычерчивание границы между объектом и фоном. В рамках работы предлагаемого алгоритма сначала метод исключения областей выделяет потенциальные области, в которых могут находиться строения и устраняет нежелательные элементы на изображении (растительность, водные поверхности и дороги), которые могут быть ложно распознаны как строения. Далее модифицированный метод жука определяет местоположение и контуры строений. На финальном этапе среди обнаруженных объектов выявляются искусственно созданные объекты, у которых имеется объем. Для реализации проверки объектов на искусственное происхождение и объемность разработаны собственные методы. Представленный алгоритм распознавания показывает хорошую точность распознавания и не требует обучающей выборки. В статье описывается программная реализация предлагаемого метода. Демонстрируются результаты вычислительных экспериментов по оцениванию эффективности метода и сравнению с тремя известными алгоритмами распознавания.

Ключевые слова


распознавание строений; спутниковые снимки; гибридный метод; метод жука; метод исключения областей; текстурные характеристики; границы зданий; потенциальные области; классификация

Полный текст:

PDF

Литература


Gilin S.V. The task of automatic recognition of buildings in water protection zones on satellite images. Information Technologies and Mathematical Modeling (ITMM-2021): Proceedings of the XX International Conference named after A.F. Terpugov, Tomsk, Russia, December 1–5, 2021. Tomsk: National Research Tomsk State University, 2022. P. 6–12. (in Russian)

Zaharov A.A., Tujilkin A.Y. Segmentation of satellite images based on super pixels and graph sections. Software systems and computational methods. 2018. No. 1. P. 7–17. (in Russian) DOI: 10.7256/2454-0714.2018.1.25629.

Fukunaga K. An introduction to the statistical theory of pattern recognition. Moscow: Science, 2009. 368 p. (in Russian)

Gorbachev V.A., Krivorotov I.A., Markelov A.O., Kotlyarova E.V. Semantic segmentation of satellite images of airports using convolutional neural networks. Computer optics. 2020. Vol. 44, no. 4. P. 636–645. (in Russian) DOI: 10.18287/2412-6179-CO-636.

Shahoud А., Shashev D., Shidlovskiy S. Detection of Good Matching Areas Using Convolutional Neural Networks in Scene Matching-Based Navigation Systems. Annual International Conference on Computer Graphics and Machine Vision GraphiCon (GraphiCon-2021): Proceedings of the International Conference on Computer Graphics and Machine Vision “Graphicon”, Tomsk, Russia, September 27–30, 2021. Moscow, M.V. Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 2021. P. 443–452. (in Russian)

He W., Li J., Cao W., Zhang L., Zhang H. Building Extraction from Remote Sensing Images via an Uncertainty-Aware Network. URL: https://arxiv.org/pdf/2307.12309 (accessed: 15.02.2024).

Sorokin D.V., Krylov A.S. The active contour method for image segmentation. Moscow: LTD “MAX Press”, 2022. 116 p. (in Russian)

Chernov A.V., Chupshev N.V. Automatic detection of building contours in cartographic images. Computer optics. 2007. Vol. 31, no. 4. P. 636–645. (in Russian)

Panchenko D.S., Putyanin E.P. Comparative analysis of image segmentation methods. Radio electronics and computer science. 1999. Vol. 4. P. 109–114. (in Russian)

Vorontsov K.V. Mathematical methods of teaching by use cases. URL: http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf (accessed: 10.09.2023). (in Russian)

Xu Yu., Wang К., Liu S., Yang S., Yan B. Atmospheric correction of hyperspectral data using MODTRAN model. Remote Sensing of the Environment: 16th National Symposium on Remote Sensing of China. 2008. Vol. 7123. P. 1–7. DOI: 10.1117/12.815552.

Golub Y.I., Starovoytov V.V., Konoplin E.E. Segmentation of areas with approximately uniform brightness. Artificial intelligence. 2008. Vol. 3. P. 332–338. (in Russian)

Furman Y.А., Kreveckiy A.V., Peredreev A.K. An introduction to contour analysis and its applications to image and signal processing. Moscow: PHYSICAL ANALYSIS, 2002. 592 p. (in Russian)

Sakovich I.O., Belov Y.S. Overview of the main methods of contour analysis for highlighting the contours of moving objects. Engineering Journal: Science and Innovation. 2014. Vol. 36, no. 12. P. 1–11. (in Russian)




DOI: http://dx.doi.org/10.14529/cmse240204