О численном методе для задачи Стокса с граничными условиями Неймана в невыпуклой области

Алексей Викторович Рукавишников

Аннотация


Рассмотрена задача Стокса с граничными условиями Неймана с входящим углом на границе двумерной области. Введено понятие R_v-обобщенного решения в множествах весовых пространств Соболева. Построен весовой метод конечных элементов на равномерной сетке, основанный на конечно-элементной паре Тейлора—Худа второго порядка и введения в базис весовой функции в некоторых степенях v* и μ* для компонент поля скоростей и скалярной функции давления соответственно. Весовая функция в области совпадает с функцией расстояния от точки до вершины входящего угла в некоторой δ-окрестности и константе δ вне ее. Проведены численные эксперименты в невыпуклой области. Получен порядок сходимости приближенного решения к точному решению задачи, независящий от величины входящего угла и превышающий порядок сходимости для классического МКЭ. Результат о сходимости достигается без геометрического сгущения сетки в окрестности точки сингулярности. Проведена серия численных экспериментов для различных величин входящего угла и найдена область подходящих свободных параметров предложенного подхода. Для любой точки построенной области достигается оптимальный, с точки зрения сходимости, результат. Область выбора подходящих свободных параметров отличается от области для рассматриваемой задачи с граничными условиями Дирихле.

Ключевые слова


угловая сингулярность; задача Стокса с граничными условиями Неймана; R_v-обобщенное решение; весовой МКЭ

Полный текст:

PDF

Литература


Ciarlet P. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978. 529 p.

Burda P., Novotny J., Sistek J. Precise FEM solution of a corner singularity using an adjusted mesh. International Journal for Numerical Methods in Fluids. 2005. Vol. 47. P. 1285–1292. DOI: 10.1002/fld.929.

Choi H.J., Kweon J.R. A finite element method for singular solutions of the Navier—Stokes. Journal of Computational and Applied Mathematics. 2016. Vol. 292. P. 342–362. DOI: 10.1016/j.cam.2015.07.006.

Rukavishnikov V.A. Differential properties of an Rnu -generalized solution of the Dirichlet problem. Soviet Mathematics Doklady. 1990. Vol. 40. P. 653–655.

Rukavishnikov V.A. Methods of numerical analysis for boundary value problem with strong singularity. Russian Journal of Numerical Analysis and Mathematical Modelling. 2009. Vol. 24. P. 565–590. DOI: 10.1515/RJNAMM.2009.035.

Rukavishnikov V.A., Rukavishnikova E.I. Existence and uniqueness of an R_v-generalized solution of the Dirichlet problem for the Lame system with a corner singularity. Differential Equations. 2019. Vol. 55, no. 6. P. 832–840. DOI: 10.1134/S0012266119060107.

Rukavishnikov V.A., Rukavishnikova E.I. On the Dirichlet problem with corner singularity. Mathematics. 2020. Vol. 8, no. 11. P. 1870. DOI: 10.3390/math8111870.

Rukavishnikov V.A., Rukavishnikov A.V. On the existence and uniqueness of an R_v-generalized solution to the Stokes problem with corner singularity. Mathematics. 2022. Vol. 10, no. 10. P. 1752. DOI: 10.3390/math10101752.

Rukavishnikov V.A., Rukavishnikov A.V. Theoretical analysis and construction of numerical method for solving the Navier-Stokes equations in rotation form with corner singularity. Journal of Computational and Applied Mathematics. 2023. Vol. 429. P. 115218. DOI: 10.1016/j.cam.2023.115218.

Rukavishnikov V.A., Rukavishnikova E.I. Weighted finite element method and body of optimal parameters for elasticity problem with singularity. Computers & Mathematics with Applications. 2023. Vol. 151. P. 408–417. DOI: 10.1016/j.camwa.2023.10.021.

Rukavishnikov A.V., Rukavishnikov V.A. New numerical approach for the steady-state Navier—Stokes equations with corner singularity. International Journal of Computational Methods. 2022. Vol. 19, no. 9. P. 2250012. DOI: 10.1142/S0219876222500128.

Rukavishnikov V.A., Rukavishnikova E.I. Numerical method for Dirichlet problem with degeneration of the solution on the entire boundary. Symmetry. 2019. Vol. 11, no. 12. P. 1455. DOI: 10.3390/sym11121455.

Mitrea M., Monniaux S., Wright M. The Stokes operator with Neumann boundary conditions in Lipschitz domains. Journal of Mathematical Sciences. 2011. Vol. 176, no. 3. P. 409–457. DOI: 10.1007/s10958-011-0400-0.

Monniaux S. Various boundary conditions for Navier—Stokes equations in bounded Lipschitz domains. Discrete and Continuous Dynamical Systems - S. 2013. Vol. 6, no. 5. P. 1355–1369. DOI: 10.3934/dcdss.2013.6.1355.

Shibata Y., Shimizu S. On the Stokes equation with Neumann boundary condition. Banach Center Publications. 2005. Vol. 70. P. 239–250.

Denis C., ter Elst A.F.M. The Stokes Dirichlet-to-Neumann operator. Journal of Evolution Equations. 2024. Vol. 24. P. 22. DOI: 10.1007/s00028-023-00930-x.

Rukavishnikov V.A., Rukavishnikov A.V. On the properties of operators of the Stokes problem with corner singularity in nonsymmetric variational formulation. Mathematics. 2022. Vol. 10, no. 6. P. 889. DOI: 10.3390/math10060889.

Boffi D., Brezzi F., Fortin M. Mixed finite element methods and applications. Berlin: Springer, 2013. 685 p. DOI: 10.1007/978-3-642-36519-5.

Rukavishnikov V.A., Rukavishnikova E.I. Weighted finite-element method for Elasticity problems with singularity. Finite element method. Simulations, numerical analysis and solution techniques. London: IntechOpen, 2018. P. 295–311. DOI: 10.5772/intechopen.72733.




DOI: http://dx.doi.org/10.14529/cmse240401