Интеграция средств восстановления пропусков временных рядов в режиме реального времени в реляционную СУБД
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Majumdar S., Laha A.K. Clustering and classification of time series using topological data analysis with applications to finance. Expert Syst. Appl. 2020. Vol. 162. P. 113868. DOI: 10.1016/j.eswa.2020.113868.
Kumar S., Tiwari P., Zymbler M.L. Internet of Things is a revolutionary approach for future technology enhancement: a review. J. Big Data. 2019. Vol. 6. P. 111. DOI: 10.1186/S40537-019-0268-2.
Seyedan M., Mafakheri F. Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. J. Big Data. 2020. Vol. 7, no. 1. P. 53. DOI: 10.1186/S40537-020-00329-2.
Jensen S.K., Pedersen T.B., Thomsen C. Time Series Management Systems: A Survey. IEEE Trans. Knowl. Data Eng. 2017. Vol. 29, no. 11. P. 2581–2600. DOI: 10.1109/TKDE.2017.2740932.
Ivanova E.V., Zymbler M.L. Overview of Modern Time Series Management Systems. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2020. Vol. 9, no. 4. P. 79–97. DOI: 10.14529/cmse200406.
Shen C., Ouyang Q., Li F., et al. Lindorm TSDB: A Cloud-native Time-series Database for Large-scale Monitoring Systems. Proc. VLDB Endow. 2023. Vol. 16, no. 12. P. 3715–3727. DOI: 10.14778/3611540.3611559.
Ivanova E.V., Zymbler M.L. Embedding of the Matrix Profile Concept Into a Relational DBMS for Time Series Mining. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2021. Vol. 10, no. 3. P. 72–87. DOI: 10.14529/cmse210305.
Khalefa M.E., Fischer U., Pedersen T.B., Lehner W. Model-based Integration of Past & Future in TimeTravel. Proc. VLDB Endow. 2012. Vol. 5, no. 12. P. 1974–1977. DOI: 10.14778/2367502.2367551.
Fischer U., Rosenthal F., Lehner W. F2DB: The Flash-Forward Database System. IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012 / ed. by A. Kementsietsidis, M.A.V. Salles. IEEE Computer Society, 2012. P. 1245–1248. DOI: 10.1109/ICDE.2012.117.
Agarwal A., Alomar A., Shah D. tspDB: Time Series Predict DB. NeurIPS 2020 Competition and Demonstration Track, 6-12 December 2020, Virtual Event / Vancouver, BC, Canada. Vol. 133 / ed. by H.J. Escalante, K. Hofmann. PMLR, 2020. P. 27–56. Proceedings of Machine Learning Research. URL: http://proceedings.mlr.press/v133/agarwal21a.html.
Arous I., Khayati M., Cudré-Mauroux P., et al. RecovDB: Accurate and Efficient Missing Blocks Recovery for Large Time Series. 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019. IEEE, 2019. P. 1976–1979. DOI: 10.1109/ICDE.2019.00218.
Ariyo A.A., Adewumi A.O., Ayo C.K. Stock Price Prediction Using the ARIMA Model. UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, UKSim 2014, Cambridge, United Kingdom, March 26-28, 2014 / ed. by D. Al-Dabass, A. Orsoni, R.J. Cant, et al. IEEE, 2014. P. 106–112. DOI: 10.1109/UKSIM.2014.67.
Salinas D., Flunkert V., Gasthaus J., Januschowski T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting. 2020. Vol. 36, no. 3. P. 1181–1191. DOI: https://doi.org/10.1016/j.ijforecast.2019.07.001.
Lim B., Arik S.Ó., Loeff N., Pfister T. Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting. CoRR. 2019. Vol. abs/1912.09363. arXiv: 1912.09363. URL: http://arxiv.org/abs/1912.09363.
Cao W., Wang D., Li J., et al. BRITS: Bidirectional Recurrent Imputation for Time Series. Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada / ed. by S. Bengio, H.M. Wallach, H. Larochelle, et al. 2018. P. 6776–6786. URL: https://proceedings.neurips.cc/paper/2018/hash/734e6bfcd358e25ac1db0a4241b95651-Abstract.html.
Yoon J., Zame W.R., Schaar M. van der. Estimating Missing Data in Temporal Data Streams Using Multi-Directional Recurrent Neural Networks. IEEE Trans. Biomed. Eng. 2019. Vol. 66, no. 5. P. 1477–1490. DOI: 10.1109/TBME.2018.2874712.
Fortuin V., Baranchuk D., Rätsch G., Mandt S. GP-VAE: Deep Probabilistic Time Series Imputation. The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy]. Vol. 108 / ed. by S. Chiappa, R. Calandra. PMLR, 2020. P. 1651–1661. Proceedings of Machine Learning Research. URL: http://proceedings.mlr.press/v108/fortuin20a.html.
Du W., Côte D., Liu Y. SAITS: Self-attention-based imputation for time series. Expert Syst. Appl. 2023. Vol. 219. P. 119619. DOI: 10.1016/J.ESWA.2023.119619.
Oh E., Kim T., Ji Y., Khyalia S. STING: Self-attention based Time-series Imputation Networks using GAN. CoRR. 2022. Vol. abs/2209.10801. DOI: 10.48550/ARXIV.2209.10801. arXiv: 2209.10801.
Fang C., Wang C. Time Series Data Imputation: A Survey on Deep Learning Approaches. CoRR. 2020. Vol. abs/2011.11347. arXiv: 2011.11347. URL: https://arxiv.org/abs/2011.11347.
Wang J., Du W., Cao W., et al. Deep Learning for Multivariate Time Series Imputation: A Survey. CoRR. 2024. Vol. abs/2402.04059. DOI: 10.48550/ARXIV.2402.04059. arXiv: 2402.04059.
Silberschatz A., Korth H.F., Sudarshan S. Database System Concepts, Seventh Edition. McGraw-Hill Book Company, 2020. URL: https://www.db-book.com/.
Yurtin A.A. Imputation of Multivariate Time Series Based on the Behavioral Patterns and Autoencoders. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2024. Vol. 13, no. 2. P. 39–55. DOI: 10.14529/cmse240203.
Zymbler M., Goglachev A. Fast summarization of long time series with graphics processor. Mathematics. 2022. Vol. 10, no. 10. P. 1781. DOI: 10.3390/math10101781.
Imani S., Madrid F., Ding W., et al. Introducing time series snippets: A new primitive for summarizing long time series. Data Min. Knowl. Discov. 2020. Vol. 34, no. 6. P. 1713–1743. DOI: 10.1007/s10618-020-00702-y.
Bilenko R.V., Dolganina N.Y., Ivanova E.V., Rekachinsky A.I. High-performance Computing Resources of South Ural State University. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2022. Vol. 11, no. 1. P. 15–30. DOI: 10.14529/cmse220102.
Zymbler M.L., Polonsky V.A., Yurtin A.A. On One Method of Imputation Missing Values of a Streaming Time Series in Real Time. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2021. Vol. 10, no. 4. P. 5–25. DOI: 10.14529/cmse210401.
DOI: http://dx.doi.org/10.14529/cmse250102