Улучшение оценки стоимостной меры риска многомерных портфелей с помощью смеси вероятностных анализаторов главных компонент

Никита Васильевич Волков

Аннотация


В работе предлагается новый подход для оценки стоимостной меры риска (VaR) многомерных портфелей, основанный на смеси вероятностных анализаторов главных компонент (mPPCA) и информационном критерии Акаике. Проверяется эффективность рассматриваемого подхода на основе исторических данных с учетом различного количества компонент смесей в методе mPPCA. Исследование проводится на 100 сильно и 100 слабо диверсифицированных портфелях акций индекса S&P 500 за период 2009–2023 гг., используя скользящие окна размером 350 торговых дней. Вероятностный метод главных компонент (PPCA) позволяет моделировать сложные зависимости между активами и учитывать «тяжелые» хвосты распределений. Благодаря этому метод mPPCA превосходит классический метод главных компонент (PCA) в точности оценки. Помимо этого, за счет понижения размерности модель оказывается вычислительно существенно легче и стабильнее, чем смесь гауссовских распределений (GMM). В работе показывается зависимость волатильности и «тяжести» хвостов распределений лог-приростов стоимости портфеля как от оптимального количества компонент в методе mPPCA, так и от минимального достаточного количества основных компонент в методах PCA и PPCA для объяснения 80 % дисперсии в данных. Новый подход с оптимизацией количества компонент методом mPPCA показывает более высокие результаты, чем подходы с методами GMM, PCA и PPCA, особенно на слабо диверсифицированных портфелях. В работе описаны подходы по оптимизации обучения метода mPPCA и проведена обширная оценка эффективности на основе исторических данных (бэктестинг). Использование JIT-компиляции, «теплого старта» обучения метода mPPCA на каждом новом положении окна и трехступенчатый алгоритм поиска меры VaR позволяют существенно ускорить эксперименты по сравнению с обычной реализацией.

Ключевые слова


Value at Risk; VaR; PCA; PPCA; mPPCA; бэктестинг; понижение размерности

Полный текст:

PDF

Литература


Duffie D., Pan J. An overview of value at risk. Journal of Derivatives. 1997. Vol. 4, no. 3. P. 7–49. DOI: 10.3905/jod.1997.407971.

Ledoit O., Wolf M. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance. 2003. Vol. 10, no. 5. P. 603–621. DOI: 10.1016/S0927-5398(03)00007-0.

Fan J., Liao Y., Liu H. An overview of the estimation of large covariance and precision matrices. The Econometrics Journal. 2016. Mar. Vol. 19, no. 1. P. C1–C32. DOI: 10.1111/ectj.12061.

Pafka S., Kondor I. Noisy covariance matrices and portfolio optimization II. Physica A: Statistical Mechanics and its Applications. 2003. Vol. 319. P. 487–494. DOI: 10.1016/S0378-4371(02)01499-1.

Pearson K. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1901. Vol. 2, no. 11. P. 559–572. DOI: 10.1080/14786440109462720.

Kelly B., Malamud S., Pedersen L.H. Principal Portfolios. The Journal of Finance. 2023. Vol. 78, no. 1. P. 347–387. DOI: 10.1111/jofi.13199.

Mavungu M. Computation of financial risk using principal component analysis. Algorithmic Finance. 2023. Vol. 10, no. 1-2. P. 1–20. DOI: 10.3233/af-220339.

Kulikov A.V., Polozov D.S., Volkov N.V. Long-term investment optimization based on Markowitz diversification. Business Informatics. 2024. Vol. 18, no. 3. P. 56–69. DOI: 10.17323/2587-814X.2024.3.56.69.

Partovi M.H., Caputo M. Principal Portfolios: Recasting the Efficient Frontier. Economics Bulletin. 2004. Jan. Vol. 7. P. 1–10.

Markowitz H. Portfolio Selection. The Journal of Finance. 1952. Vol. 7, no. 1. P. 77–91. DOI: 10.2307/2975974.

Meucci A. Managing diversification. Risk. 2009. P. 74–79.

Lohre H., Neugebauer U., Zimmer C. Diversified Risk Parity Strategies for Equity Portfolio Selection. The Journal of Investing. 2012. Aug. Vol. 21. P. 111–128. DOI: 10.3905/joi.2012.21.3.111.

Lohre H., Opfer H., Ország G. Diversifying risk parity. The Journal of Risk. 2014. June. Vol. 16. P. 53–79. DOI: 10.21314/JOR.2014.284.

Luxenberg E., Boyd S. Portfolio construction with Gaussian mixture returns and exponential utility via convex optimization. Optimization and Engineering. 2024. Vol. 25, no. 1. P. 555–574. DOI: 10.1007/s11081-023-09814-y.

Indrė Morkūnaitė D.C., Leipus R. Evaluation of Value-at-Risk (VaR) using the Gaussian Mixture Models. Research in Statistics. 2024. Vol. 2, no. 1. P. 2346075. DOI: 10.1080/27684520.2024.2346075.

Ruan L., Yuan M., Zou H. Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models. Neural Computation. 2011. Vol. 23. P. 1605–1622. DOI: 10.1162/NECO_a_00128.

Halbe Z., Bortman M., Aladjem M. Regularized Mixture Density Estimation with an Analytical Setting of Shrinkage Intensities. IEEE Transactions on Neural Networks and Learning Systems. 2013. Vol. 24. P. 460–470. DOI: 10.1109/TNNLS.2012.2234477.

Moon T. The expectation-maximization algorithm. IEEE Signal Processing Magazine. 1996. Vol. 13, no. 6. P. 47–60. DOI: 10.1109/79.543975.

Tipping M.E., Bishop C.M. Probabilistic Principal Component Analysis. Journal of the Royal Statistical Society Series B. 1999. Vol. 61, no. 3. P. 611–622. DOI: 10.1111/1467-9868.00196.

Tipping M.E., Bishop C.M. Mixtures of Probabilistic Principal Component Analyzers. Neural Computation. 1999. Feb. Vol. 11, no. 2. P. 443–482. DOI: 10.1162/089976699300016728.

Lyu Y., Zhou L., Cong Y., et al. Multirate mixture probability principal component analysis for process monitoring in multimode processes. IEEE Transactions on Automation Science and Engineering. 2023. Vol. 21, no. 2. P. 2027–2038. DOI: 10.1109/TASE.2023.3253285.

Tra V., Amayri M., Bouguila N. Unsupervised fault detection for building air handling unit systems using deep variational mixture of principal component analyzers. IEEE Transactions on Automation Science and Engineering. 2024. Vol. 21, no. 4. P. 6787–6803. DOI: 10.1109/tase.2023.3331347.

Zhang J., Chen M., Hong X. Nonlinear process monitoring using a mixture of probabilistic PCA with clusterings. Neurocomputing. 2021. Vol. 458. P. 319–326. DOI: 10.1016/j.neucom.2021.06.039.

Zhao B., Xiao X., Zhang W., et al. Self-Paced Probabilistic Principal Component Analysis for Data with Outliers. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020. P. 3737–3741. DOI: 10.1109/icassp40776.2020.9054487.

Chao Han S.L., House L. Covariance-Guided Mixture Probabilistic Principal Component Analysis (C-MPPCA). Journal of Computational and Graphical Statistics. 2015. Vol. 24, no. 1. P. 66–83. DOI: 10.1080/10618600.2014.891460.

Tzagkarakis G., Caicedo-Llano J., Dionysopoulos T. Exploiting market integration for pure alpha investments via probabilistic principal factors analysis. Journal of Mathematical Finance. 2013. Vol. 3, no. 1. P. 192–200. DOI: 10.4236/jmf.2013.31A018.

Begušic S., Kostanjcar Z. Cluster-Specific Latent Factor Estimation in High-Dimensional Financial Time Series. IEEE Access. 2020. Vol. 8. P. 164365–164379. DOI: 10.1109/ACCESS.2020.3021898.

Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 1974. Dec. Vol. 19, no. 6. P. 716–723. DOI: 10.1109/TAC.1974.1100705.

Brutti Righi M., Sergio Ceretta P. On the existence of an optimal estimation window for risk measures. Applied Finance Letters. 2015. Nov. Vol. 4, no. 12. P. 28–32. DOI: 10.24135/afl.v4i1and2.30.

Volkov N.V. Estimating VaR of diversified portfolios using PCA and PPCA dimensionality reduction methods. Proceedings of MIPT. 2025. Vol. 17, no. 1. P. 127–141. (in Russian).

Kupiec P.H. Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives. 1995. Vol. 3, no. 2. P. 73–84. DOI: 10.3905/jod.1995.407942.

Lam S.K., Pitrou A., Seibert S. Numba: A LLVM-based Python JIT Compiler. Proceedings of the SecondWorkshop on the LLVM Compiler Infrastructure in HPC, LLVM 2015, Austin, TX, USA, November 15, 2015. ACM, 2015. P. 1–6. DOI: 10.1145/2833157.2833162.

Ypma T.J. Historical development of the Newton–Raphson method. SIAM Review. 1995. Vol. 37, no. 4. P. 531–551. DOI: https://doi.org/10.1137/1037125.

Volkov N. MPPCA for VaR Estimation: Source Code Repository. 2025. URL: https://gitlab.com/n.volkovsky/mppca-for-var-estimation (accessed: 20.03.2025).

MacQueen J. Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1, Statistics. Vol. 5. University of California Press. 1967. P. 281–298.

Lloyd S. Least squares quantization in PCM. IEEE Transactions on Information Theory. 1982. Vol. 28, no. 2. P. 129–137. DOI: 10.1109/TIT.1982.1056489.




DOI: http://dx.doi.org/10.14529/cmse250201