О вычислении вершины многогранника допустимых решений системы линейных ограничений
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Dantzig G.B. Linear programming and extensions. Princeton, N.J.: Princeton university press, 1998. 656 p.
Zhulev A., Sokolinsky L. AlEM: a new parallel algorithm for linear programming on cluster computing systems. PREPRINTS.RU. 2025. P. 1–19. (in Russian) DOI: 10.24108/preprints-3113529.
Avis D. A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm. Polytopes - Combinatorics and Computation. DMV Seminar, vol 29 / ed. by G. Kalai, G. Ziegler. Basel: Birkhauser, 2000. P. 177–198. DOI: 10.1007/978-3-0348-8438-9_9.
Assad C.L., Morales G., Arica J. Vertex Enumeration of Polyhedra. Pesquisa Operacional. 2022. Vol. 42: e25457. P. 1–20. DOI: 10.1590/0101-7438.2022.042.00254570.
Schrijver A. Theory of Linear and Integer Programming. Chichester, New York, Brisbane, Tofonfo, Singapore: Wiley, Sons, 1998. 484 p.
Klee V., Minty G.J. How good is the simplex algorithm?. Inequalities - III. Proceedings of the Third Symposium on Inequalities Held at the University of California, Los Angeles, Sept. 1-9, 1969 / ed. by O. Shisha. New York, NY, USA: Academic Press, 1972. P. 159–175.
Khachiyan L. Fourier–Motzkin Elimination Method. Encyclopedia of Optimization / ed. by C. Floudas, P. Pardalos. Boston, MA: Springer, 2008. P. 1074–1077. DOI: 10.1007/978-0-387-74759-0_187.
Duffin R.J. On fourier’s analysis of linear inequality systems. Pivoting and Extensions / ed. by M. Balinski. Berlin, Heidelberg: Springer, 1974. P. 71–95. DOI: 10.1007/BFB0121242.
Motzkin T.S. Contributions to the Theory of Linear Inequalities. Theodore S. Motzkin: Selected Papers / ed. by D. Cantor, B. Gordon, B.L. Rothschild. Boston: Birkhauser, 1983. P. 1–80.
Gritzmann P., Klee V. Mathematical Programming and Convex Geometry. Handbook of Convex Geometry, Vol. A / ed. by P.M. Gruber, J.M. Wills. Amsterdam: Elsevier, 1993. P. 627–674.
Ziegler G.M. Lectures on Polytopes. Vol. 152. New York, NY: Springer New York, 1995. XI, 370 p. Graduate Texts in Mathematics. DOI: 10.1007/978-1-4613-8431-1.
Murty K.G. Computational and Algorithmic Linear Algebra and n-Dimensional Geometry. World Scientific, 2011. xxi, 552 p. DOI: 10.1142/8261.
Kaczmarz S. Approximate solution of systems of linear equations. International Journal of Control. 1993. Vol. 57, no. 6. P. 1269–1271. DOI: 10.1080/00207179308934446.
Chen X. The Kaczmarz algorithm, row action methods, and statistical learning algorithms. Frames and Harmonic Analysis. Contemporary Mathematics, vol. 706 / ed. by Y. Kim, S. Narayan, G. Picioroaga, E. Weber. Providence, Rhode Island: American Mathematical Society, 2018. P. 115–128. DOI: 10.1090/CONM/706.
Olkhovsky N.A., Sokolinsky L.B. Surface Movement Method for Linear Programming. Lobachevskii Journal of Mathematics. 2024. Vol. 45, no. 10. P. 5061–5079. DOI: 10.1134/S1995080224605745.
Olkhovsky N., Sokolinsky L. Visualizing Multidimensional Linear Programming Problems. Parallel Computational Technologies. PCT 2022. Communications in Computer and Information Science, vol. 1618 / ed. by L. Sokolinsky, M. Zymbler. Cham: Springer, 2022. P. 172–196. DOI: 10.1007/978-3-031-11623-0_13.
Agmon S. The relaxation method for linear inequalities. Canadian Journal of Mathematics. 1954. Vol. 6. P. 382–392. DOI: 10.4153/CJM-1954-037-2.
Motzkin T.S., Schoenberg I.J. The relaxation method for linear inequalities. Canadian Journal of Mathematics. 1954. Vol. 6. P. 393–404. DOI: 10.4153/CJM-1954-038-x.
Gay D.M. Electronic mail distribution of linear programming test problems. Mathematical Programming Society COAL Bulletin. 1985. Vol. 13. P. 10–12.
Koch T. The final NETLIB-LP results. Operations Research Letters. 2004. Vol. 32, no. 2. P. 138–142. DOI: 10.1016/S0167-6377(03)00094-4.
Sokolinsky L.B., Sokolinskaya I.M. Apex Method: A New Scalable Iterative Method for Linear Programming. Mathematics. 2023. Vol. 11, no. 7. P. 1–28. DOI: 10.3390/MATH11071654.
Deutsch F. Rate of Convergence of the Method of Alternating Projections. Parametric Optimization and Approximation / ed. by B. Brosowski, F. Deutsch. Basel: Birkhauser Verlag, 1985. P. 96–107. DOI: 10.1007/978-3-0348-6253-0_7.
DOI: http://dx.doi.org/10.14529/cmse250301