Контроль достоверности показаний средств измерений технического мониторинга с использованием каскада автоэнкодеров
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Randall R., Smith W. Detection of faulty accelerometer mounting from response measurements. Journal of Sound and Vibration. 2020. Vol. 477. P. 115318. DOI: 10.1016/j.jsv.2020.115318.
Abboud D., Elbadaoui M., Becquerelle S., Lalmi M. Detection of Sensor Detachment in Aircraft Engines Using Vibration Signals. Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM / ed. by K.L. Cavalca, H.I. Weber. Cham: Springer International Publishing, 2019. P. 351–365. DOI: 10.1007/978-3-319-99268-6_25.
Peng B., Bi Y., Xue B., et al. A Survey on Fault Diagnosis of Rolling Bearings. Algorithms. 2022. Vol. 15, no. 10. DOI: 10.3390/a15100347.
Kannan V., Zhang T., Li H. A Review of the Intelligent Condition Monitoring of Rolling Element Bearings. Machines. 2024. Vol. 12, no. 7. DOI: 10.3390/machines12070484.
Wu G., Yan T., Yang G., et al. A Review on Rolling Bearing Fault Signal Detection Methods Based on Different Sensors. Sensors. 2022. Vol. 22, no. 21. DOI: 10.3390/s22218330.
Li L., Qu L. Cyclic statistics in rolling bearing diagnosis. Journal of Sound and Vibration. 2003. Vol. 267, no. 2. P. 253–265. DOI: 10.1016/S0022-460X(02)01412-8.
Karacay T., Akturk N. Experimental diagnostics of ball bearings using statistical and spectral methods. Tribology International. 2009. Vol. 42, no. 6. P. 836–843. DOI: 10.1016/j.triboint.2008.11.003.
Gupta P., Pradhan M. Fault detection analysis in rolling element bearing: A review. Materials Today: Proceedings. 2017. Vol. 4, no. 2, Part A. P. 2085–2094. 5th International Conference of Materials Processing and Characterization (ICMPC 2016). DOI: 10.1016/j.matpr.2017.02.054.
Gao C., Liu S., Zhang X. A new method of adaptive Fourier modal decomposition and its application to rolling bearing fault diagnosis. Structural Health Monitoring. 2025. DOI: 10.1177/14759217251347534.
Li D.Z., Wang W., Ismail F. An Enhanced Bispectrum Technique With Auxiliary Frequency Injection for Induction Motor Health Condition Monitoring. IEEE Transactions on Instrumentation and Measurement. 2015. Vol. 64, no. 10. P. 2679–2687. DOI: 10.1109/TIM.2015.2419031.
Zhen L., Zhengjia H., Yanyang Z., Xuefeng C. Bearing condition monitoring based on shock pulse method and improved redundant lifting scheme. Mathematics and Computers in Simulation. 2008. Vol. 79, no. 3. P. 318–338. DOI: 10.1016/j.matcom.2007.12.004.
Butler D. The Shock-pulse method for the detection of damaged rolling bearings. Non-Destructive Testing. 1973. Vol. 6, no. 2. P. 92–95. DOI: 10.1016/0029-1021(73)90116-3.
He Y., Hu M., Feng K., Jiang Z. Bearing Condition Evaluation Based on the Shock Pulse Method and Principal Resonance Analysis. IEEE Transactions on Instrumentation and Measurement. 2021. Vol. 70. P. 1–12. DOI: 10.1109/TIM.2021.3050679.
Zhang Q., Deng L. An Intelligent Fault Diagnosis Method of Rolling Bearings Based on Short-Time Fourier Transform and Convolutional Neural Network. Journal of Failure Analysis and Prevention. 2023. Vol. 23. P. 795–811. DOI: 10.1007/s11668-023-01616-9.
Yue Y.,Wang H., Zhang S. Mel frequency mapping for intelligent diagnosis of rolling element bearings across different working conditions. Applied Acoustics. 2024. Vol. 220. P. 109944. DOI: 10.1016/j.apacoust.2024.109944.
Xie F., Li G., Song C., Song M. The Early Diagnosis of Rolling Bearings’ Faults Using Fractional Fourier Transform Information Fusion and a Lightweight Neural Network. Fractal and Fractional. 2023. Vol. 7, no. 12. DOI: 10.3390/fractalfract7120875.
Qin Y., Yang R., Shi H., et al. Adaptive Fast Chirplet Transform and Its Application Into Rolling Bearing Fault Diagnosis Under Time-Varying Speed Condition. IEEE Transactions on Instrumentation and Measurement. 2023. Vol. 72. P. 1–12. DOI: 10.1109/TIM.2023.3282660.
Raj K.K., Kumar S., Kumar R.R. Systematic Review of Bearing Component Failure: Strategies for Diagnosis and Prognosis in Rotating Machinery. rabian Journal for Science and Engineering. 2024. Vol. 50. P. 5353–5375. DOI: 10.1007/s13369-024-09866-x.
Yuan Y., Wei J., Huang H., et al. Review of resampling techniques for the treatment of imbalanced industrial data classification in equipment condition monitoring. Engineering Applications of Artificial Intelligence. 2023. Vol. 126. P. 106911. DOI: 10.1016/j.engappai.2023.106911.
Liang P., Yu Z., Wang B., et al. Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network. Advanced Engineering Informatics. 2023. Vol. 57. P. 102075. DOI: 10.1016/j.aei.2023.102075.
Liu S., Jiang H., Wu Z., Li X. Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis. Mechanical Systems and Signal Processing. 2022. Vol. 163. P. 108139. DOI: 10.1016/j.ymssp.2021.108139.
Iglesias G., Talavera E., González-Prieto Á., et al. Data Augmentation techniques in time series domain: a survey and taxonomy. Neural Computing and Applications. 2023. Vol. 35. P. 10123–10145. DOI: 10.1007/s00521-023-08459-3.
Lebedev D.K. Sensitivity of the Rolling Bearings Diagnostic Method Depending on the Number of Measuring Points of a Multipoint Temperature Sensor. 2025 27th International Conference on Digital Signal Processing and its Applications (DSPA). 2025. P. 1–5. DOI: 10.1109/DSPA64310.2025.10977932.
Goglachev A.I. Classification of Streaming Time Series Based on Neural Network Technologies and Behavioral Patterns. Bulletin of
the South Ural State University. Series: Computational Mathematics and Software Engineering. Vol. 13, no. 3. 2024. P. 79–94. DOI: 10.14529/cmse240305.
Kraeva Y.A. Anomaly Detection in Time Series Based on Data Mining and Neural Network Technologies. Bulletin of
the South Ural State University. Series: Computational Mathematics and Software Engineering. Vol. 12, no. 3. 2023. P. 50–71. DOI: 10.14529/cmse230304.
Givnan S., Chalmers C., Fergus P., et al. Anomaly Detection Using Autoencoder Reconstruction upon Industrial Motors. Sensors. 2022. Vol. 22, no. 9. DOI: 10.3390/s22093166.
Ahmad S., Styp-Rekowski K., Nedelkoski S., Kao O. Autoencoder based Condition Monitoring and Anomaly Detection Method for Rotating Machines. 2020 IEEE International Conference on Big Data (Big Data). 2020. P. 4093–4102. DOI: 10.1109/BigData50022.2020.9378015.
Malviya V., Mukherjee I., Tallur S. Edge-Compatible Convolutional Autoencoder Implemented on FPGA for Anomaly Detection in Vibration Condition-Based Monitoring. IEEE Sensors Letters. 2022. Vol. 6, no. 4. P. 1–4. DOI: 10.1109/LSENS.2022.3159972.
Shestakov A.L., Lebedev D.K., Sinitsin V.V., et al. Intelligent Multipoint Temperature Sensors Data Processing for Rolling Bearings Diagnosis. 2024 XXXIV International Scientific Symposium Metrology and Metrology Assurance (MMA). 2024. P. 1–6. DOI: 10.1109/MMA62616.2024.10817658.
Mohammad M., Ibryaeva O., Sinitsin V., Eremeeva V. A Computationally Efficient Method for the Diagnosis of Defects in Rolling Bearings Based on Linear Predictive Coding. Algorithms. 2025. Vol. 18, no. 2. DOI: 10.3390/a18020058.
Thimmaraja Y.G., Nagaraja B.G., Jayanna H.S. Speech enhancement and encoding by combining SS-VAD and LPC. International Journal of Speech Technology. 2021. Vol. 24. P. 165–172. DOI: 10.1007/s10772-020-09786-9.
Wang Y., Huang H., Rudin C., Shaposhnik Y. Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization. Journal of Machine Learning Research. 2021. Vol. 22, no. 201. P. 1–73. URL: http://jmlr.org/papers/v22/20-1061.html.
DOI: http://dx.doi.org/10.14529/cmse250401




