Повышение точности показаний вихреакустических расходомеров за счет высокоточной оценки частоты вихреобразования

Ольга Леонидовна Ибряева, Артем Дмитриевич Яковенко, Владимир Владимирович Синицин, Александр Леонидович Шестаков

Аннотация


В статье рассматривается задача повышения точности вихреакустических расходомеров за счет высокоточной оценки частоты вихреобразования в условиях коротких временных окон и зашумленных сигналов. Традиционные методы, основанные на быстром преобразовании Фурье (БПФ), сталкиваются с фундаментальным ограничением разрешения при анализе коротких интервалов, что снижает их эффективность в динамических режимах измерений. В качестве альтернативы предложен модифицированный метод матричных пучков (ММП), относящийся к параметрическим методам высокого разрешения. Метод позволяет моделировать сигнал как сумму комплексных экспонент и обеспечивает устойчивую оценку частоты даже при низком отношении сигнал/шум. Проведено сравнение ММП и БПФ на модельных и экспериментальных сигналах с вихреакустического расходомера. Показано, что ММП обеспечивает более стабильные оценки частоты: стандартное отклонение уменьшается в среднем в 1.5 раза. При этом вычислительная сложность метода оказывается сопоставимой или даже ниже за счет малой длины анализируемых окон. Полученные результаты демонстрируют потенциал ММП для создания алгоритмов автоматического контроля достоверности показаний средств измерений. Метод может быть положен в основу систем самодиагностики и коррекции погрешностей, вызванных нестационарностью потока, вибрациями или наличием двухфазного течения.

Ключевые слова


вихреакустический расходомер; оценка частоты; метод матричных пучков; высокое разрешение; обработка сигналов; достоверность измерений; двухфазный поток; параметрические методы

Полный текст:

PDF

Литература


Ibryaeva O.L., Salov D.D. Modification of the matrix pencil method using joint estimation of signal poles and their inverses. Bulletin of South Ural State University. Series: Computational Mathematics and Informatics. 2017. Vol. 6, no. 1. P. 26–37. DOI: 10.14529/cmse170102.

Venugopal A., Agrawal A., Prabhu S.V. Review on vortex flowmeter - designer perspective. Sensors and Actuators A: Physical. 2011. Vol. 170. P. 8–23. DOI: 10.1016/j.sna.2011.05.034.

Kremlevskii P.P. Flowmeters and counters of quantity of substances. Reference book: Vol. 2. St. Petersburg: Politekhnika, 2004. 412 p.

Wang X., Lin S., Kang Y., et al. Simulation analysis of the influence of two-phase flow on the accuracy of the low-temperature vortex flowmeter. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2025. Vol. 47. P. 365. DOI: 10.1007/s40430-025-05679-7.

Sun Y., Zhang T., Zheng D. New analysis scheme of flow-acoustic coupling for gas ultrasonic flowmeter with vortex near the transducer. Sensors. 2018. Vol. 18, no. 4. P. 1151. DOI: 10.3390/s18041151.

Sun H.-j., Huo C., Wang H.-x. The experimental research of vortex flowmeter in vertical upward gas-liquid two-phase flow. 2009 IEEE Instrumentation and Measurement Technology Conference (IMTC). 2009. P. 167–170. DOI: 10.1109/IMTC.2009.5168437.

Sun Z. Mass flow measurement of gas-liquid bubble flow with the combined use of a Venturi tube and a vortex flowmeter. Measurement Science and Technology. 2010. Vol. 21, no. 5. P. 055403. DOI: 10.1088/0957-0233/21/5/055403.

Shen H., Fu X., Chen J.-D., Ye P. Development of a vortex flowmeter with good performance at low-flowrate. 15th International Flow Measurement Conference (FLOMEKO 2010). 2010. Vol. 1. P. 524–530.

Miau J., Hu C., Chou J. Response of a vortex flowmeter to impulsive vibrations. Flow Measurement and Instrumentation. 2000. Vol. 11. P. 41–49. DOI: 10.1016/S0955-5986(99)00018-7.

Proakis J.G., Manolakis D.G. Digital signal processing: principles, algorithms, and applications. 4th ed. Upper Saddle River, NJ: Prentice Hall, 2006. 1019 p.

Jacobsen E., Kootsookos P. Fast, accurate frequency estimators [DSP tips & tricks]. IEEE Signal Processing Magazine. 2007. Vol. 24, no. 3. P. 123–125. DOI: 10.1109/MSP.2007.361611.

Candan C. A method for fine resolution frequency estimation from three DFT samples. IEEE Signal Processing Letters. 2011. Vol. 18, no. 6. P. 351–354. DOI: 10.1109/LSP.2011.2136378.

Hans V., Windorfer H. Comparison of pressure and ultrasound measurements in vortex flow meters. Measurement. 2003. Vol. 33. P. 121–133. DOI: 10.1016/S0263-2241(02)00057-X.

Prony G.R. Experimental and analytical essay on the laws of the dilatability of elastic fluids and on the expansive force of water vapor and alcohol vapor at different temperatures. Journal de l’École Polytechnique. 1795. Vol. 1, no. 22. P. 24–76.

Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation. 1986. Vol. 34, no. 3. P. 276–280. DOI: 10.1109/TAP.1986.1143830.

Roy R., Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1989. Vol. 37, no. 7. P. 984–995. DOI: 10.1109/29.32276.

Hua Y., Sarkar T.K. On the total least squares linear prediction method for frequency estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1990. Vol. 38, no. 12. P. 2186–2189. DOI: 10.1109/29.61547.

Sun Z., Chen H., Chen Y. Application of periodogram and welch based spectral estimation to vortex frequency extraction. Proceedings - 2012 International Conference on Intelligent Systems Design and Engineering Applications, ISDEA 2012. 2012. DOI: 10.1109/ISdea.2012.689.

Zheng D., Zhang T., Xing J., Jianqiang M. Improvement of the HHT method and application in weak vortex signal detection. Measurement Science and Technology. 2007. Vol. 18. P. 2769. DOI: 10.1088/0957-0233/18/9/005.

Huang S., Yin J., Sun Z., et al. Characterization of gas–liquid two-phase flow by correlation dimension of vortex-Induced pressure fluctuation. IEEE Access. 2017. Vol. 5. P. 10307–10314. DOI: 10.1109/ACCESS.2017.2713458.

Huang S., Sun Z., Zhou T., et al. Application of time-frequency entropy from wake oscillation to gas-liquid flow pattern identification. Journal of Central South University. 2018. Vol. 25, no. 7. P. 1690–1700. DOI: 10.1007/s11771-018-3860-2.

Sun Z., Chen Y., Gong H. Classification of gas-liquid flow patterns by the norm entropy of wavelet decomposed pressure fluctuations across a bluff body. Measurement Science and Technology. 2012. Vol. 23, no. 12. P. 125301. DOI: 10.1088/09570233/23/12/125301.

Hans V. New aspects of the arrangement and geometry of bluff bodies in ultrasonic vortex flow meters. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference. 2002. Vol. 2. P. 1661–1664. DOI: 10.1109/IMTC.2002.1007209.

Akresh M., Reindl L., Walker W. Improved vortex flow meter using pre-filter. 2008 2nd International Conference on Signals, Circuits and Systems. 2008. P. 1–5. DOI: 10.1109/ICSCS.2008.4746877.

Metran group of vompanies. Catalog of measuring instruments. Volume 2. Temperature sensors. Flowmeters. Level gauges. URL: https://metran.ru/journal/ (accessed: 12.08.2025).




DOI: http://dx.doi.org/10.14529/cmse250303