Разработка компьютерных моделей баллистических тканей с поверхностной обработкой

Наталья Юрьевна Долганина, Анастасия Валерьевна Игнатова

Аннотация


Баллистические ткани на сегодняшний день широко применяются в качестве элементов защитных структур. Актуальными задачами при разработке бронеструктур являются минимизация их массы, уменьшение кинетической энергии пули, передаваемой объекту, расположенному за бронепанелью (снижение величины прогиба тыльной стороны панели). Значительная часть энергии пули рассеивается за счет работы сил трения при вытягивании нитей из ткани. Умение предсказывать работу баллистической ткани при вытягивании нитей позволит проектировать высокоэффективные бронеструктуры. Поэтому были разработаны малопараметрические численные модели вытягивания нити из арамидной ткани Р110 полотняного переплетения, а также для этой ткани с разными типами поверхностной обработки (канифоль, силиконовая смазка) в пакете программ LS-DYNA. Поверхностная обработка ткани позволяет изменять коэффициент трения между нитями с минимальным увеличением веса, и в модели она учитывалась за счет изменения одного параметра — коэффициента сухого трения. Рассмотрено несколько способов распараллеливания задачи вытягивания нити из ткани, получены графики ускорения. Были получены расчетные зависимости нагрузки от перемещения при вытягивании нити из ткани с поверхностной обработкой и без нее. Расчетные результаты лежат в диапазоне разброса экспериментальных данных.

Ключевые слова


численные методы; метод конечных элементов; суперкомпьютерное моделирование; арамидная ткань; вытягивание нити из ткани; поверхностная обработка; LS-DYNA

Полный текст:

PDF

Литература


Kharchenko E.F., Ermolenko A.F. Kompozitnye, tekstil'nye i kombinirovannye bronematerialy [Composite, Textile and Combined Armor Materials]. Moscow, Publ. of TsNIISM, 2013. 294 p.

Zhu D., Soranakom C., Mobasher B., Rajan S.D. Experimental Study and Modeling of Single Yarn Pull-Out Behavior of Kevlar® 49 Fabric. Composites: Part A. 2011. vol. 42. pp. 868–879. DOI: 10.1016/j.compositesa.2011.03.017.

Das S., Jagan S., Shaw A., Pal A. Determination of Inter-Yarn Friction and Its Effect on Ballistic Response of Para-Aramid Woven Fabric under Low Velocity Impact. Composite Structures. 2015. vol. 120. pp. 129–140. DOI: 10.1016/j.compstruct.2014.09.063.

Gawandi A., Thostenson E.T., Gilllespie J.W.Jr. Tow Pullout Behavior of Polymer-Coated Kevlar Fabric. Journal of Materials Science. 2011. vol. 46, no. 1. pp. 77–89. DOI: 10.1007/s10853-010-4819-3.

Majumdar A., Butola B.S., Srivastava A. Development of Soft Composite Materials with Improved Impact Resistance Using Kevlar Fabric and Nano-Silica Based Shear Thickening Fluid. Materials and Design. 2014. vol. 54. pp. 295–300. DOI: 10.1016/j.matdes.2013.07.086.

Lee B.-W., Kim C.-G. Computational Analysis of Shear Thickening Fluid Impregnated Fabrics Subjected to Ballistic Impacts. Advanced Composite Materials. 2012. vol. 21, No. 2. pp. 177–192. DOI: 10.1080/09243046.2012.690298.

Mayo J.B.Jr., Wetzel E.D., Hosur M.V., Jeelani S. Stab and Puncture Characterization of Thermoplastic-Impregnated Aramid Fabrics. International Journal of Impact Engineering. 2009. vol. 36. pp. 1095–1105. DOI: 10.1016/j.ijimpeng.2009.03.006.

Soloveva E.A., Kurmashova I.A. Issledovanie mekhanizma vzaimodeistviia koliushchego oruzhiia s zashchitnymi strukturami na osnove vysokoprochnykh volokon [Investigation of the Mechanism of Interaction of the Piercing Weapon with Protective Structures Based on High-Strength Fibers]. Voprosy oboronnoi tekhniki. Seriia 15 [Defense Engineering Problems. Series 15]. 2015. no. 4(179). pp. 60–65. (in Russian)

Lopez-Galvez H., Rodriguez-Millan M., Feito N., Miguelez H. A Method for Inter-Yarn Friction Coefficient Calculation for Plain Wave of Aramid Fibers. Mechanics Research Communications. 2016. vol. 74. pp. 52–56. DOI: 10.1016/j.mechrescom.2016.04.004.

Tapie E., Guo Y.B., Shim V.P.W. Yarn Mobility in Woven Fabrics — a Computational and Experimental Study. International Journal of Solids and Structures. 2016. vol. 80. pp. 212–226. DOI: 10.1016/j.ijsolstr.2015.11.005.

Dong Z., Sun C.T. Testing and Modeling of Yarn Pull-Out in Plain Woven Kevlar Fabrics. Composites: Part A. 2009. vol. 40. pp. 1863–1869. DOI: 10.1016/j.compositesa.2009.04.019.

Valizadeh M., Lomov S., Ravandi S.A.H., Salimi M., Rad S.Z. Finite Element Simulation of a Yarn Pullout Test for Plain Woven Fabrics. Textile Research Journal. 2010. vol. 80, no. 10. pp. 892–903. DOI: 10.1177/0040517509346436.

LS-DYNA R7.0 Keyword User's Manual. LSTC. 2013. 2206 p.

Nilakantan G., Nutt S. Effects of Clamping Design on the Ballistic Impact Response of Soft Body Armor. Composite Structures. 2014. vol. 108. pp. 137–150. DOI: 10.1016/j.compstruct.2013.09.017.

Kostenetskiy P.S., Safonov A.Y. SUSU Supercomputer Resources. Proceedings of the 10th Annual International Scientific Conference on Parallel Computing Technologies (PCT 2016). Arkhangelsk, Russia, March 29–31, 2016. CEUR Workshop Proceedings. 2016. v. 1576. pp. 561–573.




DOI: http://dx.doi.org/10.14529/cmse170407