Practical Aspects of Implementation of the Parallel Algorithm for Solving Problem of Ctenophore Population Interaction in the Azov Sea
Аннотация
The paper covers the development and researching mathematical model of interaction processes between plankton and ctenophore populations based on the modern information technologies and computational methods, which leads to increase of the accuracy of predictive modeling of the ecology situation in shallow water in summer. The model takes into account the following: the transport of water environment; microturbulent diffusion; nonlinear interaction of plankton and ctenophore populations; biogenic, temperature and oxygen regimes; influence of salinity. The computational accuracy is significantly increased, and computational time is decreased at using the calculation method based on partially filled cells for discretization of model. The practical significance is the software implementation of the proposed model, the limits and prospects of its practical use are defined. Experimental software was developed based on multiprocessor computer system, which is intended for mathematical modeling of possible progress scenarios in shallow waters ecosystems on the example of the Azov Sea in summer. We used decomposition methods of grid domains in parallel implementation for computationally laborious convection-diffusion problems, taking into account the architecture and parameters of multiprocessor computer system.
Ключевые слова
Полный текст:
PDF (English)Литература
Shushkina E.A., Vinogradov M.E. Changes of Phytoplankton in openRregion of the Black Sea for Many Years. Okeanologiya [Oceanology]. 1991. vol. 3, no. 6. pp. 973–980. (in Russian)
Shushkina E.A., Musaeva E.I., Anohina L.L., Lukasheva T.A. The Role of Jelly
Macroplankton, Jellyfish Aurelia and Ctenophores Mnemiopsis and Be in Plankton Communities of the Black Sea. Okeanologiya [Oceanology]. 2006. vol. 40, no. 6. pp. 859–866. (in Russian)
Povazhnyiy V.V., Moiseev D.V. Modern situation of Mnemiopsis leidyi (A. Adassiz) Ctenophores Population in the Taganrog Bay. Ecosystem Research of the Azov Sea, Black Sea, Caspian Sea. Apatity: Izd-vo KNTs RAN [Apatite: Publishing House of the CSC RAS]. 2006. vol. 8. pp. 132–141. (in Russian)
Kamakin A.M., Zaytsev V.F., Katunin D.N. Ecological-Biological Basis of Mathematical Modeling of the Ctenophore Mnemiopsis leidyi Populations in the Caspian Sea. Vestnik AGTU. Ser.: Rybnoe khozyaistvo [Vestnik of AFTU. Ser.: Fisheries]. 2015. no. 1. pp. 47–61.
Dudkin S.I., Lozhichevskaya T.V., Mirzoyan I.A. The Metabolism of the Ctenophore Mnemiopsis leidyi in the Azov area and Some Environmental Consequences of its Introduction Tezisy dokladov 8 s"ezda Gidrobiologicheskogo obshchestva RAN, Kaliningrad [The 8-th Congress of Hydrobiological Society of RAS: abstracts]. Kaliningrad, 2001. pp. 76–77. (in Russian)
Portal "Analiticheskie GIS" [The "Analytical GIS"portal]. Available at:
http://geo.iitp.ru/index.php (accessed: 25.04.2018).
Shiganova T.A, Sapozhnikov V.V., Musaeva E.I., etc. The Conditions, Determined the Distribution of the Ctenophore Mnemiopsis leidyi and its Impact on the Ecosystem of the Northern Caspian Sea. Okeanologiya [Oceanology]. 2003. vol. 43, no. 5. pp. 716–733. (in Russian)
Volovik S.P. (ed.) Grebnevik Mnemiopsis leidyi (A. Agassiz) v Azovskom i Chernom moryakh i posledstviya ego vseleniya [The Ctenophore Mnemiopsis Liedyi (A. Agassiz) in the Azov and Black Seas and the Consequences of their Choice]. Rostov-on-don. 2000. 320 p.
Sukhinov A.I., Chistyakov A.E., Semenyakina A.A., Nikitina A.V. Numerical Modeling of an Ecological Condition of the Sea of Azov with Application of Schemes of the Raised Accuracy Order on the Multiprocessor Computing System. Computer researches and modeling. 2016. vol. 8, no. 1. pp. 151–168.
Sukhinov A.I., Chistyakov A.E., Nikitina A.V., Semenyakina A.A., Korovin Y.E, Schaefer G. Modelling of Oil Spill Spread. 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV). 2016. pp. 1134–1139.
Nauchno-issledovatel’skii tsentr "Planeta" [State Research Center "Planeta"]. Available at: http://planet.iitp.ru/english/index_eng.htm (accessed: 25.04.2018).
Sukhinov A.I., Nikitina A.V., Chistyakov A.E., Semenov I.S., Semenyakina A.A., Khachunts D.S. Mathematical modeling of eutrophication processes in shallow waters on multiprocessor computer system. Parallelnye vychislitelnye tekhnologii (PaVT’2016): trudy mezhdunarodnoi
nauchnoi konferentsii ( Arkhangel’sk, 28 marta – 1 aprelya 2016) [Parallel Computational Technologies (PCT 2016): Proceedings of the 10th Annual International Scientific Conference on Parallel Computing Technologies, CEUR Workshop Proceedings (Arkhangelsk, Russia, March 29-31, 2016)]. 2016. vol. 1576. pp. 320–333.
Nikitina A.V., Sukhinov A.I., Ugolnitsky G.A., Usov A.B., Chistyakov A.E., Puchkin M.V., Semenov I.S. Optimal Control of Sustainable Development in the Biological Rehabilitation of the Azov Sea. Mathematical Models and Computer Simulations. 2017. vol. 9, no. 1. pp. 101–107.
Nikitina A.V., Tretyakov M.V. Modeling of Algae Process of Shallow Water by Instilling a Strain of Green Algae Chlorella vulgaris bin. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering science]. 2012. no. 1. pp. 128–133. (in Russian)
Sukhinov, A.I., Nikitina, A.V., Chistyakov, A.E., Semenov, I.S.: Mathematical Modeling of the Formation Conditions of Zamora in Shallow Waters on a Multiprocessor Computing System. Vychislitel’nye metody i programmirovanie: novye vychislitel’nye tekhnologii [Computational methods and programming: new computing technology]. 2013. vol. 14, no. 1. pp. 103–112.
Sukhinov A.I., Chistyakov A.E., Protsenko E.A. Two-Dimensional Hydrodynamic Model that Takes into Account the Dynamic Rebuild of the Bottom Geometry of a Shallow Water. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Science]. 2011. no. 8(121). pp. 159–167. (in Russian)
Sukhinov A.I., Chistyakov A.E., Protsenko E.A. The Construction of Discrete Two-Dimensional Mathematical Model of Sediment Transport. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Science]. 2011. no. 8(121). pp. 32–44. (in Rusian)
Sukhinov A.I., Chistyakov A.E., Protsenko E.A. Mathematical Modeling of Sediment Transport in the Coastal Zone of Shallow Reservoirs. Mathematical Models and Computer Simulations. 2014. vol. 6, no. 4. pp. 351–363.
Samarskiy A.A. Teoriya raznostnykh skhem [Theory of Difference Schemes]. Moscow, Publishing of the Nauka, 1989. 616 p.
Nikitina A.V., Semenyakina A.A., Chistyakov A.E. Parallel Implementation of the Tasks of Diffusion-Convection-Based Schemes of High Order of Accuracy. Vestnik komp’yuternykh i informatsionnykh tekhnologii [Vestnik of Computer and Information Technology]. 2016. no. 7(145). pp. 3–8. (in Russian)
Sukhinov A.I., Nikitina A.V., Semenyakina A.A., Chistyakov A.E. Complex of Models, Explicit Regularized Schemes of High-Order of Accuracy and Applications for Predictive Modeling of After-Math of Emergency Oil Spill. Parallelnye vychislitelnye tekhnologii (PaVT’2016): trudy mezhdunarodnoi nauchnoi konferentsii ( Arkhangel’sk, 28 marta – 1 aprelya 2016) [Parallel Computational Technologies (PCT 2016): Proceedings of the 10th Annual International Scientific Conference on Parallel Computing Technologies, CEUR Workshop Proceedings (Arkhangelsk, Russia, March 29-31, 2016)]. 2016. vol. 1576. pp. 308–319.
Sukhinov A.I., Nikitina A.V., Semenyakina A.A., Protsenko E.A. Complex Programs and Algorithms to Calculate Sediment Transport and Multi-Component Suspensions on a Multiprocessor Computer System. Inzhenernyi vestnik Dona [Engineering Journal of Don]. 2015. vol. 38, no. 4(38). pp. 52. (in Russian)
Konovalov A.N. The Theory of Alternating-Triangular Iterative Method. Sibirskii matematicheskii zhurnal [Siberian Mathematical Journal]. 2002. vol. 43, no. 3. pp. 552–572.
Belotserkovskiy O.M. Turbulentnost’: novye podkhody [The Turbulence: the New Approaches]. Moscow: Publishing of the Nauka, 2003. 286 p.
Sukhinov A.I., Chistyakov A.E. Adaptive Modified Alternating Triangular Iterative Method for Solving Grid Equations with Non-Selfadjoint Operator. Mathematical Models and Computer Simulations. 2012. vol. 24, no. 1. pp. 3–20.
Nikitina A.V., Sukhinov A.I. Ougolnitsky G.A., Usov A.B., Chistyakov A.E., Puchkin M.V., Semenov I.S. Optimal Management of Sustainable Development at the Biological Rehabilitation of the Azov Sea. Mathematical Models and computer Simulations. 2016. vol. 28. no. 7. pp. 96–106.
Chistyakov A.E., Nikitina A.V., Ougolnitsky G.A., Puchkin V.M., Semenov I.S., Sukhinov A.I., Usov A.B. A Differential Game Model of Preventing Fish Kills in Shallow Waterbodies. Game Theory and Applications. 2015. vol. 17. pp. 37–48.
Trˆan J.K. A Predator-prey Functional Response Incorporating Indirect Interference and Depletion. Verh. Internat. Verein. Limnol. 2008. vol. 30. pp. 302–305.
Tyutyunov Yu., Senina I., Arditi R. Clustering due to Acceleration in the Response to Population Gradient: a Simple Self-organization Model. The American Naturalist. 2004. vol. 164. pp. 722–735. DOI: 10.1086/425232.
Volterra V. Variations and Fluctuations of the Number of Individuals in Animal Species Living Together. Rapp. P., V. Reun. Cons. Int. Explor. Mer. 1928. vol. 3. pp. 3–51.
Yakushev E.V., Mikhailovsky G.E. Mathematical Modeling of the Influence of Marine Biota on the Carbon Dioxide Ocean-atmosphere Exchange in High Latitudes. Air-Water Gas Transfer [Sel. Papers: Third Int. Symp., Heidelberg University, ed. by B. Jaehne and E.C. Monahan]. 1995. pp. 37–48.
Petrov I.B. Application of Grid-characteristic Method for Numerical Solution of Deformable Solid Mechanics Dynamical Problems. Computational Mathematics and Information Technologies. 2017. vol. 1, no. 1. pp. 1–20.
Sukhinov A.I., Sidoryakina V.V., Sukhinov A.A. Sufficient Convergence Conditions for Positive Solutions of Linearized Two-dimensional Sediment Transport Problem. Computational Mathematics and Information Technologies. 2017. vol. 1, no. 1. pp. 21–35.
Nikitina A.V., Semenyakina A.A. Mathematical Modeling of Eutrophication Processes in Azov Sea on Supercomputers. Computational Mathematics and Information Technologies. 2017. vol. 1, no. 1. pp. 82–101.
Chistyakov A.E., Protsenko E.A., Timofeeva E.F. Mathematical Modeling of Oscillatory Processes with a Free Boundary. Computational Mathematics and Information Technologies. 2017. vol. 1, no. 1. pp. 102–112.
DOI: http://dx.doi.org/10.14529/cmse180303