Обзор подходов и практических областей применения распознавания видов физической активности человека

Елена Сергеевна Тарантова, Кирилл Владимирович Макаров, Алексей Александрович Орлов

Аннотация


Распознавание видов физической активности человека является одним из актуальных направлений исследования в области машинного обучения, так как результаты распознавания необходимы при решении многих практических задач. В статье приводится обзор подходов и практических областей применения методов распознавания видов физической активности человека. Рассматриваются датчики, используемые для распознавания видов физической активности человека, и представлены критерии их выбора. Представлены возможные пути решения проблемы выбора места размещения и ориентации носимых датчиков. В статье рассматриваются основные этапы распознавания видов физической активности человека. Представлены извлекаемые признаки и методы их отбора для повышения точности классификации видов физической активности человека и снижения вычислительных затрат за счет уменьшения числа признаков. Сформулированы достоинства и недостатки популярных методов классификации. Рассматриваются метрики, используемые для оценки качества обучения модели классификации. Наиболее применяемой метрикой качества является кривая ошибок. Также представлены практические задачи, в которых необходимы результаты распознавания видов физической активности человека. Основными областями применения метода распознавания являются медицина, производство, фитнес и безопасность людей. В заключении представлены возможные направления будущих исследований.

Ключевые слова


распознавание образов; машинное обучение; виды физической активности человека

Полный текст:

PDF

Литература


Baev N.O. Support Vector Machines in Image Classification. Mezhdunarodnyy zhurnal informatsionnykh tekhnologiy i energoeffektivnosti [International Journal of Information Technologies and Energy Efficiency]. 2017. no. 2(4). pp. 17–21. (in Russian).

Tarantova E.S., Makarov K.V. Feature Selection and Choosing the Method for Physical Activity Classification in the Task of Building the Telerehabilitation System. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravleniye, Vychislitel'naya tekhnika, Informatika. Meditsinskoye priborostroyeniye [News of South-West State University. Series: Management, Computer Engineering, Computer Science. Medical Instrument]. 2018. vol. 8, no. 1(26). pp. 54–62. (in Russian).

Altun K., Barshan B. Human Activity Recognition Using Inertial/Magnetic Sensor Units. Springer-Verlag Berlin Heidelberg. 2010. pp. 38–51. DOI: 10.1007/978-3-642-14715-9_5.

Bächlin M., Kusserow M, Tröster G., et al. Ski Jump Analysis of an Olympic Champion with Wearable Acceleration Sensors. International Symposium on Wearable Computers (ISWC), Oct. 10–13, 2010, Seoul, South Korea. DOI: 10.1109/iswc.2010.5665851.

Bayat A., Pomplun M., Tran D.A. A Study on Human Activity Recognition Using Accelerometer Data from Smartphones. The 9th International Conference on Future Networks and Communications (FNC'14)/The 11th International Conference on Mobile Systems and Pervasive Computing (MobiSPC'14)/Affiliated Workshops. Procedia Computer Science, Aug. 17–20, 2014, Niagara Falls, Canada. vol. 34. pp. 450–457. DOI: 10.1016/j.procs.2014.07.009.

Brémond F., Thonnat M., Zúñiga M. Video-understanding Framework for Automatic Behavior Recognition. Behavior Research Methods. 2006. vol. 38. pp. 416–426. DOI: 10.3758/bf03192795.

Bulling A., Blanke U., Schiele B. A Tutorial on Human Activity Recognition Using Body-worn Inertial Sensors. ACM Computing Surveys (CSUR). 2014. vol. 46. pp. 1–33. DOI: 10.1145/2499621.

Capela N.A., Lemaire E.D., Baddour N. Feature Selection for Wearable Smartphone-Based Human Activity Recognition with Able Bodied, Elderly, and Stroke Patients. PLoS ONE. 2015. vol. 10. DOI: 10.1371/journal.pone.0124414.

Chandrashekar G., Sahin F. A Survey on Feature Selection Methods. Computers and Electrical Engineering. 2014. vol. 40. pp. 16–28. DOI: 10.1016/j.compeleceng.2013.11.024.

Dernbach S., Das B., Krishnan N.C., et al. Simple and Complex Activity Recognition through Smart Phones. 2012 Eighth International Conference on Intelligent Environments, Jun. 26–29 2012, Guanajuato, Mexico. DOI: 10.1109/IE.2012.39.

Du K., Zhang D., Musa M.W., et al. Handling Activity Conflicts in Reminding System for Elders with Dementia. 2008 Second International Conference on Future Generation Communication and Networking, Dec. 13–15, 2008, Hainan Island, China. pp. 416–421. DOI: 10.1109/FGCN.2008.117.

Favela J., Tentory M., Castro L.A., et al. Activity Recognition for Context-aware Hospital Applications: Issues and Opportunities for the Deployment of Pervasive Networks. Mobile Networks and Applications. 2007. pp. 155–171. DOI: 10.1007/s11036-007-0013-5.

Fitbit Inc. Fitbit Official Site for Activity Trackers & More. Fitbit. Available at: https://www.fitbit.com/home (accessed: 30.10.2018).

Frank K., Röckl M., Nadales M.J.V., et al. Comparison of Exact Static and Dynamic Bayesian Context Inference Methods for Activity Recognition. 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), March 29–April 2, 2010, Mannheim, Germany. pp. 189–195. DOI: 10.1109/percomw.2010.5470671.

Gao L., Bourke A.K., Nelson J. Evaluation of Accelerometer Based Multi-sensor Versus Single-sensor Activity Recognition Systems. Medical Engineering and Physics. 2014. vol. 36. pp. 779–785. DOI: 10.1016/j.medengphy.2014.02.012.

Guo J., Zhou X., Sun Y., et al. Smartphone-Based Patients’ Activity Recognition by Using a Self-Learning Scheme for Medical Monitoring. Journal of Medical Systems. 2016. vol. 40. pp. 140. DOI: 10.1007/s10916-016-0497-2.

He Y., Li Y. Physical Activity Recognition Utilizing the Built-in Kinematic Sensors of a Smartphone. International Journal of Distributed Sensor Networks. 2013. vol. 4. DOI: 10.1155/2013/481580.

He Z-Y., Jin L-W. Activity Recognition from Acceleration Data Using AR Model Representation and SVM. 2008 International Conference on Machine Learning and Cybernetics, Jul. 12–15, 2008, Kunming, China. DOI: 10.1109/icmlc.2008.4620779.

Hua S., Kim S.J., Kawanishi N., et al. A Context-aware Reminding System for Daily Activities of Dementia Patients. 27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07), Jun. 22–29, 2007, Toronto, Ont., Canada. DOI: 10.1109/icdcsw.2007.8.

Janidarmian M., Fekr A.R., Radecka K., et al. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition. Sensors. 2017. vol. 17. DOI: 10.3390/s17030529.

Kao T.P., Lin C.W., Wang J.S. Development of a Portable Activity Detector for Daily Activity Recognition. 2009 IEEE International Symposium on Industrial Electronics (ISlE 2009), Jul. 5–8, 2009 Seoul, South Korea. pp. 115–120. DOI: 10.1109/isie.2009.5222001.

Khan A., Hammerla N., Mellor S., et al. Optimising Sampling Rates for Accelerometer-Based Human Activity Recognition. Pattern Recognition Letters. 2016. pp. 33–40. DOI: 10.1016/j.patrec.2016.01.001.

Khan A.M., Lee Y-K., Lee S.Y., et al. A Triaxial Accelerometer-based Physical-activity Recognition via Augmented-signal Features and a Hierarchical Recognizer. IEEE Transactions on Information Technology in Biomedicine. 2010. vol. 14. pp. 1166–1172. DOI: 10.1109/titb.2010.2051955.

Khan A.M., Siddiqi M.H., Lee S.W. Exploratory Data Analysis of Acceleration Signals to Select Light-weight and Accurate Features for Real-time Activity Recognition o Smartphones. Sensors. 2013. vol. 13. pp. 13099–13122. DOI: 10.3390/s131013099.

Lara O.D., Labrador M.A. A Survey on Human Activity Recognition Using Wearable Sensors. IEEE Communications Surveys and Tutorials. 2013. vol. 15. pp. 1192–1209. DOI: 10.1109/surv.2012.110112.00192.

Minnen D., Westeyn T., Ashbrook D., et al. Recognizing Soldier Activities in the Field. 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007). March 26–28, 2007, RWTH Aachen University, Germany. pp. 236–241. DOI: 10.1007/978-3-540-70994-7_40.

Morales J., Akopian D. Physical Activity Recognition by Smartphones, a Survey. Biocybernetics and Biomedical Engineering. 2017. vol. 37. pp. 388–400. DOI: 10.1016/j.bbe.2017.04.004.

Murao K., Terada T. A Recognition Method for Combined Activities with Accelerometers. UbiComp '14 Adjunct Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, Sept. 13–17, 2014, Seattle, Washington. pp. 787–796. DOI: 10.1145/2638728.2641304.

Ortiz J.L.R. Smartphone-based Human Activity Recognition. SPRINGER, 2015. 133 p.

Putra I.P.E.S., Brusey J., Gaura E., et al. An Event-triggered Machine Learning Approach for Accelerometer-based Fall Detection. Sensors. 2017. vol. 18. pp. 1–18. DOI: 10.3390/s18010020.

Reiss A. Personalized Mobile Physical Activity Monitoring for Everyday Life, 2014. 176 p.

Reiss A., Stricker D. Creating and Benchmarking a New Dataset for Physical Activity Monitoring. PETRA '12 Proceedings of the 5th International Conference on PErvasive Technologies Related to Assistive Environments, Jun. 6–8, 2012, Heraklion, Crete, Greece. DOI: 10.1145/2413097.2413148.

Siirtola P., Röning J. Recognizing Human Activities User-independently on Smartphones Based on Accelerometer Data. International Journal of Interactive Multimedia and Artificial Intelligence. 2012. vol. 1. pp. 38. DOI: 10.9781/ijimai.2012.155.

Tam D., Huynh G. Human Activity Recognition with Wearable Sensors. TU Darmstadt. 2008. 147 p.

Tao W., Lai Z-H., Leu M.C., et al. Worker Activity Recognition in Smart Manufacturing Using IMU and sEMG Signals with Convolutional Neural Networks. 46th SME North American Manufacturing Research Conference, Jun. 18–22, 2018, Texas, USA. pp. 1159–1166. DOI: 10.1016/j.promfg.2018.07.152.

Twomey N., Diethe T., Kull M., et al. The SPHERE Challenge Activity Recognition with Multimodal Sensor Data. 2016. 14 p.

Uddin M., Salem A., Nam I., et al. Wearable Sensing Framework for Human Activity Monitoring. WearSys '15 Proceedings of the 2015 Workshop on Wearable Systems and Applications. May 18, 2015, Florence, Italy. pp. 21–26. DOI: 10.1145/2753509.2753513.

Walse K., Dharaskar R.V. A Survey on Human Activity Recognition Using

Smartphone. International Journal of Advance Research in Computer Science and Management Studies. 2017. vol. 5. pp. 118–125.

Yang A.Y., Jafari R., Sastry S.S., et al. Distributed Recognition of Human Actions Using Wearable Motion Sensor Networks. Journal of Ambient Intelligence and Smart Environments. 2009. vol. 1. pp. 103–115.

Yu H., Cang S., Wang Y. A Review of Sensor Selection, Sensor Devices and Sensor Deployment for Wearable Sensor-based Human Activity Recognition Systems. 2016 10th Int. Conf. on Software, Knowledge, Information Management & Applications (SKIMA), Dec. 15–17, 2016, Chengdu, China. pp. 250–257. DOI: 10.1109/skima.2016.7916228.

Zhang M., Sawchuk A.A. Feature Selection-Based Framework for Human Activity Recognition Using Wearable Multimodal Sensors. 6th International ICST Conference on Body Area Networks. 12 Jun. 2012. DOI: 10.4108/icst.bodynets.2011.247018.

VirtualRehab Body — Upper and Lower Extremity Therapy for Various Neuromotor Impairments. Available at: https://evolvrehab.com/virtualrehab/virtualrehab_body/ (accessed: 14.01.2019).




DOI: http://dx.doi.org/10.14529/cmse190303