Разработка и реализация группового протокола генерации ключа на базе IKE

Александр Александрович Волохов, Юрий Владимирович Косолапов

Аннотация


В качестве основы информационного взаимодействия участников в недоверенной среде часто выступает протокол выработки общего секретного ключа. С помощью такого ключа в дальнейшем может быть построен защищенный канал или защищенная сеть связи. В настоящее время актуальна задача разработки протоколов генерации общего ключа для группы участников. Одним из способов построения таких протоколов является обобщение протокола для двух участников на случай нескольких участников. В работе строится протокол генерации общего секретного ключа для группы участников (для конференции). В основе разработанного протокола лежит протокол IKE (Internet Key Exchange) из семейства протоколов IPSec для двух участников, обеспечивающий выполнение таких свойств безопасности, как аутентификация субъекта и сообщения, генерация новых ключей, защита от чтения назад, защита от повтора и ряда других. Стойкость разработанного протокола генерации ключа основана на сложности задачи дискретного логарифмирования в циклической группе. В работе исследуются свойства безопасности, обеспечиваемые построенным протоколом, в частности, исследуется стойкость к коалиционным атакам, актуальным для групповых протоколов. Также отмечаются некоторые особенности практического применения построенного протокола.

Ключевые слова


генерация секретного ключа; IKE; конференция

Полный текст:

PDF

Литература


Bilal M., Kang S.-G. A Secure Key Agreement Protocol for Dynamic Group. Journal Cluster Computing. 2017. Vol. 20, no. 3. P. 2779–2792. DOI: 10.1007/s10586-017-0853-0.

Cheremushkin A.V. Cryptographic Protocols: Basic Properties and Vulnerabilities. Applied discrete mathematics. Appendix. 2009. no. 2. P. 115–150. (in Russian)

Dolev D., Yao A.C. On the security of public key protocol. IEEE Transactions on Information Theory. 1983. Vol. 29, no. 2. P. 198–208. DOI: 10.1109/tit.1983.1056650.

Liu H., Yang J., Wang Y., Chen Y. J., Koksal C.E. Group Secret Key Generation via Received Signal Strength: Protocols, Achievable Rates, and Implementation. IEEE Transactions on Mobile Computing. 2014. Vol. 13, no. 12. P. 2820–2835. DOI: 10.1109/TMC.2014.2310747.

Xu P., Cumanan K., Ding Z., Dai X., Leung K.K. Group Secret Key Generation in Wireless Networks: Algorithms and Rate Optimization. IEEE Transactions on Information Forensics and Security. 2016. Vol. 11, no. 8. P. 1831–1846. DOI: 10.1109/TIFS.2016.2553643.

Wyner A.D. The Wire-tap Channel. The Bell System Technical Journal. 1975. Vol. 54, no. 8. P. 1355–1387. DOI: 10.1002/j.1538-7305.1975.tb02040.x.

Bresson E., Chevassut O., Pointcheval D. Group Diffie-Hellman Key Exchange Secure against Dictionary Attacks. 8th International Conference on the Theory and Application of Cryptology and Information Security (Queenstown, New Zealand, December, 1–5, 2002). Lecture Notes in Computer Science. 2002. P. 497–514. DOI: 10.1007/3-540-36178-2_31.

Bresson E., Manulis M. Securing Group Key Exchange against Strong Corruptions and Key Registration Attacks. International Journal of Applied Cryptography. 2008. Vol. 1, no. 2. P. 91–107. DOI: 10.1504/IJACT.2008.021083.

Baiju B.V. Secret Key Sharing Scheme Based On Key Generation Centre For Authenticated Exchange Of Messages. International Journal of Engineering Science Invention. 2013. Vol. 2, no. 11. P. 15–21.

Kim Y., Perrig A., Tsudik G. Tree-based Group Key Agreement. ACM Transactions on Information and System Security. 2004. Vol. 7, no. 1. P. 60–96. DOI: 10.1145/984334.984337.

Lin T.-H. , Tsung C.-K., Lee T.-F., Wang Z.-B. A Round-Efficient Authenticated Key Agreement Scheme Based on Extended Chaotic Maps for Group Cloud Meeting. Sensors. 2017. Vol. 17, no. 12. P. 1–14. DOI: 10.3390/s17122793.

Deundyak V.M., Taran A.A. Key Distribution System Based on Hadamard Designs. Modeling and Analysis of Information Systems. 2019. Vol. 26, no. 2. P. 229–243. (in Russian) DOI: 10.18255/1818-1015-2019-2-229-243.

Diffie W., Hellman M.E. New Directions in Cryptography. IEEE Transactions on Information Theory. 1976. Vol. 22, no. 6. P. 644–654. DOI: 10.1109/TIT.1976.1055638.

ElGamal T. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Information Theory. 1985. Vol. 31, no. 4. P. 469–472. DOI: 10.1109/TIT.1985.1057074.

Boneh D. The Decision Diffie–Hellman Problem. Third International Symposiun, ANTS-III (Portland, Oregon, USA, June, 21–25, 1998). Lecture Notes in Computer Science. 1998. Vol. 1423. P. 48–63. DOI: 10.1007/BFb0054851.

Steiner M., Tsudik G., Waidner M. Diffie-Hellman key distribution extended to group communication. 3rd ACM conference on Computer and communications security (New Delhi, India, March, 14–15, 1996). New York, ACM. 1996. P. 31–37. DOI: 10.1145/238168.238182.

Sendrier N. Code-Based Cryptography: State of the Art and Perspectives. IEEE Security & Privacy. 2017. Vol. 15, no. 4. P. 44–50. DOI: 10.1109/MSP.2017.3151345.

Deundyak V.M., Kosolapov Yu.V. On the Berger–Loidreau Cryptosystem on the Tensor Product of Codes. Journal of Computational and Engineering Mathematics. 2018. Vol. 5, no. 2. P. 16–33. DOI: 10.14529/jcem180202.




DOI: http://dx.doi.org/10.14529/cmse200101