УТИЛИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ГАЗОВ ПЕРСПЕКТИВНЫМИ СОРБЦИОННЫМИ МАТЕРИАЛАМИ

Ольга Владимировна Черемисина, Мария Александровна Пономарева, Виктор Андреевич Болотов

Аннотация


Металлургическое производство является одной из наиболее важных отраслей промышленности по объёму негативных выбросов в атмосферу. Нередко на металлургических предприятиях приходится использовать руду с очень низким содержанием полезных компонентов для извлечения стратегически ценных металлов. В связи с этим огромный объем рудных материалов поступает на обогащение и плавку, а это, в свою очередь, способствует образованию большого количества отходящих газов. Таким образом, загрязнение атмосферы является главной причиной экологических проблем, возникающих в результате деятельности металлургических предприятий. Выбросы технологических газов производств приводят к колоссальным загрязнениям природы и образованию серьезной опасности для жизни живых организмов. Кроме того, экологические проблемы отечественной металлургии не решаются из-за ряда причин. Одной из главных является недостаточная оснащенность технологических агрегатов системами очистки и обезвреживания и неэффективная работа действующих пыле- и газоочистных установок, а также использование других устаревших технологий очистки газовых выбросов (Е.П. Большина «Экология металлургического производства»).

Ключевые слова


сорбент; металлургия; очистка газов; сорбция

Полный текст:

PDF

Литература


Bolshina E.P. [Ecology of metallurgical production] Lecture course. – Novotroitsk: NF NUST “MISiS”, 2012, pp. 155.

Fathi Habashi [Clean Technology in the Metallurgical Industry] Chemistry for Sustainable Development, 12, 2004, pp. 93–98.

[Prospects for the development of the building complex] Materials of the IX International Scientific and Practical Conference Astrakhan, October 27–29, 2015 Astrakhan 2015, pp. 363–366

Valuev D. V. Gizatulin R. A. [Technologies For Metallurgical Waste Processing: tutorial] Tomsk Polytechnic. University – Tomsk: TPU Publ. House, 2013, 191 p.

Aissaoui M., Ommolbanin A., Sahraei Z., Yancheshmeh M.S., Iliuta M.C. [Development of a Fe/Mg-bearing metallurgical waste stabilized-CaO/NiO hybrid sorbent-catalyst for high purity H2 production through sorption-enhanced glycerol steam reforming] International Journal of Hydrogen Energy, 2019. DOI: 10.1016/j.ijhydene.2019.08.216

Metz B., Davidson O., de Coninck H.C., Loos M., Meyer L.J. [Special report on carbon dioxide capture and storage] Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom; New York, USA, 2005, p. 442.

Lee S.Y., Park S.J. [Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers] J. Colloid Interface Sci., 2013, pp. 230–235. DOI: 10.1016/j.jcis.2012.09.018

Su F., Lu C., Chen W., Bai H., Hwang J.F. [Capture of CO2 from flue gas via multiwalled carbon nanotubes] Sci. Total Environ., 2009, pp. 407. DOI: 10.1016/j.scitotenv.2009.01.007

Siriwardane R.V., Shen M.S., Fisher E.P., Poston J.A. [Adsorption of CO2 on molecular sieves and activated carbon] Energy Fuels, 2001, pp. 279–284. DOI: 10.1021/ef000241s

Jadhav P.D., Chatti R.V., Biniwale R.B., Labhsetwar N.K., Devotta S., Rayalu S.S. [Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures] Energy Fuels, 2007, 21 p. DOI: 10.1021/ef070038y

Gray M.L., Soong Y., Champagne K.J., Pennline H., Baltrus J.P., Stevens R.W. Jr. [Improved immobilized carbon dioxide capture sorbents] Fuel Process. Technol., 2005, 86 p. DOI: 10.1016/j.fuproc. 2005.01.005

M.C. Iliuta [CO2 Sorbents for Sorption-Enhanced Steam Reforming] In Angeliki A. Lemonidou, editor: Sorption Enhancement of Chemical Processes, Vol 51, ACHE (Advances in Chemical Engineering), UK: Academic Press Publ., Elsevier, 2017, pp. 97–205. DOI: 10.1016/bs.ache.2017.08.001

M.S. Yancheshmeh, H.R. Radfarnia, M.C. Iliuta [High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam reforming process] Chem Eng J, 2016, pp. 420–444. DOI: 10.1016/j.cej.2015.06.060

A.M. Kierzkowska, R. Pacciani, C.R. Müller [CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials] Chem Sus Chem, 2013, pp. 1130–1148. DOI: 10.1002/cssc.201300178

S.D. Angeli, C.S. Martavaltzi, A.A. Lemonidou [Development of a novel-synthesized Ca-based CO2 sorbent for multicycle operation: parametric study of sorption] Fuel, 2014, pp. 62–69. DOI: 10.1016/j.fuel.2013.10.046

Y. Zhang, Y.S. Gao, H. Pfeiffer, B. Louis, L.Y. Sun, D. O'Hare, Q. Wang [Recent advances in lithium containing ceramic based sorbents for high-temperature CO2 capture] J Mat Chem A, 2019, 7 p. DOI: 10.1039/C8TA08932A

P. Pecharaumporn, S. Wongsakulphasatch, T. Glinrun, A. Maneedaeng, Z. Hassan, S. Assabumrungrat [Synthetic CaO-based sorbent for high-temperature CO2 capture in sorption-enhanced hydrogen production] Int J Hydrogen Energy, 2019, p. 44 DOI: 10.1016/j.ijhydene.2018.06.153

Dou B., Wang C., Song Y., Chen H., Jiang B., Yang M., Xu Y. [Solid sorbents for in-situ CO2 removal during sorption-enhanced steam reforming process: a review] Renew Sustain Energy Rev, 2016, pp. 536–546. DOI: 10.1016/j.rser.2015.08.068

Chiang Y.-C., Hsu W.-L.,. Li S.-Y, Juang R.-S. [Enhanced CO2 Adsorption on Activated Carbon Fibers Grafted with Nitrogen-Doped Carbon Nanotubes] Materials, 10, 2017, 511 p. DOI: 10.3390/ma10050511

Dong K., Wang X. [CO2 Utilization in the Ironmaking and Steelmaking Process] Metals, 9(3), 2019, 273 p. DOI: 10.3390/met9030273

Lebedev A.B., Utkov V.A., Khalifa A.A. [Sintered Sorbent Utilization for H2S Removal from Industrial Flue Gas in the Process of Smelter Slag Granulation] Journal of Mining Institute, 2019, vol. 237, pp. 292–297. DOI: 10.31897/PMI.2019.3.292

Platonov O.I., Tsemekhman L.S. [High-efficiency process for production of sulfur from metallurgical sulfur dioxide gases] Russian Journal of Applied Chemistry, 2016, vol. 89, pp. 16–22. DOI: 10.1134/S107042721601002X

Cheremisina O.V., Ponomareva M.A., Bolotov V.A. [Sorption Purification of Process Gases of Metallurgical Production from Sulfur Components]. Bulletin of the South Ural State University. Ser. Metallurgy, 2019, vol. 19, no. 2, pp. 71–78. (in Russ.) DOI: 10.14529/met190208




DOI: http://dx.doi.org/10.14529/met200209

Ссылки

  • На текущий момент ссылки отсутствуют.