THERMODYNAMIC MODELING OF THE PHASE DIAGRAMS OF OXIDE SYSTEMS FeO–MgO, FeO–Cr2O3, MgO–Cr2O3 AND FeO–MgO–Cr2O3

O. V. Samoylova, L. A. Makrovets

Abstract


Thermodynamic modeling of the liquidus lines coordinates of the phase diagrams of the FeO–MgO, FeO–Cr2O3, MgO–Cr2O3 systems and liquidus surface coordinates of the phase diagram of
the FeO–MgO–Cr2O3 system was carried out. In the course of the work, the energy parameters of
the theory of subregular ionic solutions used in the calculation were determined. According to the results of the simulation, the coordinates of the points of nonvariant transformations on the phase diagrams of the studied systems are determined. The obtained results on thermodynamic modeling of the liquidus lines coordinates of the phase diagrams of the systems FeO–MgO, FeO–Cr2O3, MgO–Cr2O3 were compared with scattered literature data for the systems under study. According to the calculation results, the enthalpies and entropies of formation of the compounds FeCr2O4 and MgCr2O4 from the components of the oxide melt of the FeO–Cr2O3 and MgO–Cr2O3 systems, respectively, were
determined. According to the simulation results, the enthalpy of formation of ferrochromite from
the components of the oxide melt is 157 376 J/mol, and the entropy is 44.71 J/(mol·K). The enthalpy and entropy of the formation of magnesiochromite from the components of the oxide melt turned out to be 389 100 J/mol and 123.19 J/(mol·K), respectively. For the first time, results were obtained for calculating the liquidus surface coordinates of the FeO–MgO–Cr2O3 system. The phase diagram of the FeO–MgO–Cr2O3 system is characterized by extensive equilibrium regions of the oxide melt with solid solutions of oxides and with solid solutions of spinels. The results obtained in the course of this work are of interest for analyzing of the interaction metal and slag with the furnace lining during steelmaking processes.


Keywords


FeO–MgO–Cr2O3 system; thermodynamic modeling; phase equilibria

References


Mikhailov G.G., Leonovich B.I., Kuznetsov Yu.S. Termodinamika metallurgicheskikh protsessov i sistem [Thermodynamics of Metallurgical Processes and Systems]. Moscow, MISIS Publ., 2009. 520 p. (in Russ.)

Mikhailov G.G., Trofimov E.A., Sidorenko A.Yu. Fazovye ravnovesiya v mnogokomponentnykh sistemakh s zhidkimi tsvetnymi metallami [Phase Equilibria in the Multicomponent Systems with Liquid Non-Ferrous Metals]. Moscow, MISIS Publ., 2014. 158 p. (in Russ.)

Samoylova O.V., Mikhailov G.G., Makrovets L.A., Trofimov E.A., Sidorenko A.Yu. Thermody-namic Modeling of Liquidus Surface of the Phase Diagram of Cu2O–Al2O3–ZrO2 System. Bulletin of the South Ural State University. Ser. Metallurgy, 2015, vol. 15, no. 4, pp. 15–21. (in Russ.) DOI: 10.14529/met150402

Samoilova O.V., Makrovets L.A., Trofimov E.A. Thermodynamic Simulation of the Phase Dia-gram of the Cu2O–Na2O–K2O System. Moscow University Chemistry Bulletin, 2018, vol. 73, no. 3, pp. 105–110. DOI: 10.3103/S0027131418030057

Kubaschewski O., Alcock C.B. Metallurgical Thermochemistry. Oxford, Pergamon Press Ltd Publ., 1979. 392 p.

Darken L.S., Gurry R.W. The System Iron–Oxygen. II. Equilibrium and Thermodynamics of Liquid Oxide and Other Phases. Journal of the American Chemical Society, 1946, vol. 68, pp. 798–816.

Samsonov G.V. Fiziko-khimicheskie svoistva okislov [Physico-Chemical Properties of Oxides]. Moscow, Metallurgiya Publ, 1969. 456 p. (in Russ.)

Schenck H., Pfaff W. Das System Eisen(II)–oxyd–Magnesiumoxyd und seine Verteilungsgleichgewichte mit flüssigem Eisen bei 1520 bis 1750 °С. Archiv für das Eisenhüttenwesen, 1961, vol. 32, no. 11, pp. 741–751. DOI: 10.1002/srin.196103268

Scheel R. Gleichgewichte im System CaO–MgO–FeOn bei Gegenwart von metallischem Eisen. Sprechsaal für Keramik, Glas, Baustoffe, 1975, vol. 108, pp. 685–686.

Wu P., Eriksson G., Pelton A.D., Blander M. Prediction of the Thermodynamic Properties and Phase Diagrams of Silicate Systems – Evaluation of the FeO–MgO–SiO2 System. ISIJ International, 1993, vol. 33, no. 1, pp. 26–35. DOI: 10.2355/isijinternational.33.26

Hasegawa M., Tsukamoto T., Iwase M. Activity of Iron Oxide in Magnesiowüstite in Equilib-rium with Solid Metallic Iron. Materials Transactions, 2006, vol. 47, no. 3, pp. 854–860.

Hoffmann A. Gleichgewichtsuntersuchungen im System Eisen(II)-oxyd–Chrom(III)-oxyd. Archiv für das Eisenhüttenwesen, 1965, vol. 36, no. 3, pp. 155–162. DOI: 10.1002/srin.196504069

Belov B.F., Novohatskiy I.A., Rusakov L.N., Goroh A.V., Savinskaya A.A. Phase Equilibrium Diagram of the FeO–Cr2O3 System. Journal of Physical Chemistry, 1968, vol. XLII, no. 7, pp. 1635–1637.

Alper A.M., McNally R.N., Doman R.C., Keihn F.G. Phase Equilibria in the System MgO–MgCr2O4. Journal of the American Ceramic Society, 1964, vol. 47, no. 1, pp. 30–33.

Jung I.-H., Decterov S., Pelton A.D. Thermodynamic Modeling of the MgO–Al2O3–CrO–Cr2O3 System. Journal of The American Ceramic Society, 2005, vol. 88, no. 7, pp. 1921–1928. DOI: 10.1111/j.1551-2916.2005.00336.x

Hino M., Higuchi K., Nagasaka T., Ban-Ya S. Phase Equilibria and Activities of the Constitu-ents in FeO•Cr2O3–MgO•Cr2O3 Spinel Solid Solution Saturated with Cr2O3. ISIJ International, 1994, vol. 34, no. 9, pp. 739–745. DOI: 10.2355/isijinternational.34.739

Jacob K.T., Iyengar G.N.K. Thermodynamics and Phase Equilibria Involving the Spinel Solid Solution FexMg1–xCr2O4. Metallurgical and Materials Transactions B, 1999, vol. 30B, no. 5, pp. 865–871. DOI: 10.1007/s11663-999-0091-9




DOI: http://dx.doi.org/10.14529/met190102

Refbacks

  • There are currently no refbacks.