Производные в среднем случайных процессов и диффузионные модели в экономике
Аннотация
Статья посвящена диффузионным моделям. Рассматриваются теоретические и методологические основы диффузионных моделей финансовой математики. Как и экономическая система, современный мир стремительно развивается. Кажется невозможным предсказать, что произойдёт завтра, какое появление новых технологий окажет влияние на рынок и как изменение случайных факторов повлияет на продукт и рынок в целом. Диффузионные модели – один из основных методов исследования экономических объектов и процессов. Вот почему так важно разработать диффузионную модель.
Мы предлагаем расширение применимости моделей путем перехода от стохастических уравнений в форме Ито к уравнениям с так называемыми производными в среднем.
Для этого, следуя Э. Нельсону, вводим понятия производных в среднем справа и слева.
В уравнении с производным средним не участвует винеровский процесс, поэтому заранее не предполагается, что решение является диффузионным.
В статье дается описание некоторых известных диффузионных моделей, в которых переход от уравнений типа стохастического дифференциального уравнения в форме Ито к уравнениям, удовлетворяющим системе уравнений с производными в среднем, приводит к расширению множества возможных решений.
Также мы рассматриваем обобщение геометрического броуновского движения, которое удовлетворяет системе стохастических уравнений с производными в среднем и может покрывать более широкий класс задач.
Ключевые слова
Полный текст:
PDFDOI: http://dx.doi.org/10.14529/mmph210303
Ссылки
- На текущий момент ссылки отсутствуют.