Численное моделирование взаимодействия газовзвеси с ударной волной континуальными математическими моделями с идеальной и диссипативными несущими средами

Дмитрий Алексеевич Тукмаков

Аннотация


В данной работе проводится сопоставление компьютерных реализаций численных алгоритмов решения уравнений математических моделей динамики газовзвесей с вязкой теплопроводной, невязкой теплопроводной и идеальной несущими средами. Математические модели разработаны в рамках континуальной методики моделирования динамики многофазных сред. В исследовании моделировался часто встречающейся в горной промышленности процесс взаимодействия ударной волны, движущейся из однородного газа в газовзвесь. Актуальность исследования данного течения неоднородных сред связана с экранированием аэрозольными завесами промышленных взрывов. При моделировании для вязкой среды задавались однородные граничные условия Дирихле, для невязкой среды однородные граничные условия Неймана. Уравнения математической модели интегрировались конечно-разностным методом Мак—Кормака. Для преодоления численных осцилляций применялась нелинейная схема коррекции сеточных функций. Программа, реализующая континуальную методику динамики многофазных сред, состояла из блока задания граничных условий, блока, реализующего численное решение, блока учета межфазного взаимодействия. В результате сопоставления численных расчетов математических моделей динамики газовзвеси с идеальной, невязкой теплопроводной и вязкой теплопроводной несущими средами было выявлено, что в процессе движения газовзвеси наибольшее влияние на интенсивность межфазного обмена импульсом оказывает учет вязкости несущей среды газовзвеси.

Ключевые слова


численное моделирование; конечно-разностная схема; многофазные среды; континуальная модель; межфазное взаимодействие; уравнение Эйлера; уравнение Навье—Стокса

Полный текст:

PDF

Литература


Loitsyansky L.G. Fluid and Gas Mechanics. Moscow: Publishing “Drofa”, 2003. 784 p. (in Russian)

Fletcher C.A. Computation Techniques for Fluid Dynamics. Berlin: Publishing Springer-Verlang, 1988. 409 p. DOI: 10.1007/978-3-642-97071-9.

Muzafarov I.F., Utyuzhnikov S.V. Application of compact difference schemes to the study of unsteady compressible gas flows. Mathematical Modeling. 1993. Vol. 5, no. 3. P. 74–83. (in Russian)

Tukmakov A.L. Dependence of the mechanism of solid particle drift in a nonlinear wave field on the time constant and wave front passage time. Journal of Applied Mechanics and Technical Physics. 2011. Vol. 52, no. 4. P. 590–598. DOI: 10.1134/S0021894411040122.

Lenskaya O.Yu., Abdullaev S.M., Prikazchikov A.I., Sobolev D.N. Numerical modeling of the characteristics of the boundary layer of the atmosphere of a large industrial city (on the example of Chelyabinsk). Bulletin of the South Ural State University. Computational Mathematics and Software Engineering. 2013. Vol. 2, no. 2. P. 65–82. (in Russian) DOI: 10.14529/cmse130206.

Volkov V.Y., Golibrodo L.A., Krutikov A.A., et al. Multiscale problems of heat and mass transfer in nuclear energy. Bulletin of the South Ural State University. Computational Mathematics and Software Engineering. 2017. Vol. 6, no. 4. P. 600073. (in Russian) DOI: 10.14529/cmse170405.

Protsenko S.V., Atayan A.M., Chistyakov A.E., et al. Experimental study of power loads on the supports of a surface structure based on a mathematical model of wave processes. Bulletin of the South Ural State University. Computational Mathematics and Software Engineering. 2019. Vol. 8, no. 3. P. 27–42. (in Russian) DOI: 10.14529/cmse190302.

Madaliev M.E. Numerical study of axisymmetric jet flows based on the turbulent model nu t-92. Bulletin of the South Ural State University. Computational Mathematics and Software Engineering. 2020. Vol. 9, no. 4. P. 670078. (in Russian) DOI: 10.14529/cmse170405.

Nigmatulin R.I. Dinamika mnogofaznyh sred.Dynamics of multiphase media. Part 1. Moscow: Publishing “Nauka”, 1987. 464 p. (in Russian)

Kutushev A.G. Mathematical modeling of wave processes in aerodisperse and powder media. St. Petersburg: Publishing “Nedra”, 2003. 284 p. (in Russian)

Fedorov A.V., Fomin V.M., Khmel T.A.Wave processes in gas suspensions of metal particles. Novosibirsk: Publishing “Parallel”, 2015. 301 p. (in Russian)

Fedorov Y.V., Panin K.A. Heat and mass transfer in the acoustics of liquid with encapsulated droplets. Lobachevskii Journal of Mathematics. 2022. Vol. 43, no. 2. P. 376–380. DOI: 10.1134/S1995080222050122.

Khachai O.A., Khachai A.Y. Modeling of a seismic field in the acoustic approximation of two-phase, hierarchically inhomogeneous media. Bulletin of the South Ural State University. Computational Mathematics and Software Engineering. 2014. Vol. 3, no. 1. P. 33–43. (in Russian) DOI: 10.14529/cmse140103.

Cherkesov L.V., Shulga T.Y. Study of the influence of stationary currents on dynamic processes and the evolution of pollution in the Sea of Azov. Bulletin of the South Ural State University. Computational Mathematics and Software Engineering. 2017. Vol. 6, no. 1. P. 56–72. (in Russian) DOI: 10.14529/cmse170104.

Ravshanov N., Kurbonov N.M. Computer modeling of the process of fluid filtration in porous media. Computational Mathematics and Software Engineering. 2015. Vol. 4, no. 2. P. 89–106. (in Russian) DOI: 10.14529/cmse150207.

Surov V.S. Hyperbolic model of a single speed, heat conductive mixture with interfractional heat transfer. High Temperature. 2018. Vol. 56, no. 6. P. 890–899. DOI: 10.1134/S0018151X1806024X.

Sadin D.V., Golikov I.O., Davidchuk V.A. Modeling the interaction of a shock wave with a limited inhomogeneous layer of a gas suspension by a hybrid method of large particles. Computational methods and programming. 2021. Vol. 22, no. 1. P. 1–13. (in Russian) DOI: 10.26089/NumMet.v22r101.

Liu C., Zhao Y., Tian Z., Zhou H. Numerical Simulation of Condensation of Natural Fog Aerosol under Acoustic Wave Action. Aerosol air and quality reserch. 2021. Vol. 21, no. 4. P. 1–21. DOI: 10.4209/aaqr.2020.06.0361.

Verevkin A.A., Tsirkunov Y.M. Flow of a dispersed phase in the laval nozzle and in the test section of a two-phase hypersonic shock tunnel. Journal of Applied Mechanics and Technical Physics. 2008. Vol. 49, no. 5. P. 789–798. DOI: 10.1007/s10808-008-0099-y.

Yeom G.S., Chang K.S. Shock wave diffraction about a wedge in a gas-microdroplet mixture. International journal of heat and mass transfer. 2010. Vol. 53. P. 5073–5088. DOI: 10.1016/j.ijheatmasstransfer.2010.07.056.

Saurel R., Boivin P., Le Metayer O. A general formulation for cavitating, boiling and evaporating flows.Computers and Fluids. 2016. Vol. 128. P. 53–64. DOI: 10.1016/j.compfluid.2016.01.004.

Kapila A.K., Schwendeman D.W., Gambino J.R., Henshaw W.D. A numerical study of the dynamics of detonation initiated by cavity collapse. Shock Waves. 2015. Vol. 25. P. 545–572. DOI: 10.1007/s00193-015-0597-9.

Watanabe H., Matsuo A., Chinnayya A., et al. Numerical analysis of the mean structure of gaseous detonation with dilute water spray. Journal of Fluid Mechanics. 2020. Vol. 887. DOI: 10.1017/jfm.2019.1018.

Tukmakov D.A. Numerical study of the dynamics of gas suspensions in nonlinear wave fields: dis. cand. physics and mathematics sciences: 01.02.05 Kazan (Volga Region) Federal University, Kazan, 2015. 135 p. URL: https://kpfu.ru/dis_card?p_id=1958 (accessed: 08.09.2022). (in Russian)

Nigmatulin R.I., Gubaidullin D.A., Tukmakov D.A. Shock Wave Dispersion of Gas-Particle Mixtures. Doklady Physics. 2016. Vol. 61, no. 2. P. 70–73. DOI: 10.1134/S1028335816020038.

Tukmakov D.A. Numerical study of the influence of the density of the material of the dispersed component on the intensity of the generation of an acoustic pulse in an electrically charged gas suspension. Mathematical notes of NEFU. 2020. Vol. 27, no. 4. P. 99–109. (in Russian) DOI: 10.25587/SVFU.2020.77.39.008.

Tukmakov D.A. Comparison of mathematical models of the dynamics of electrically charged gas suspensions for various concentrations of the dispersed component. Applied Informatics. 2022. Vol. 17, no. 1. P. 39–54. (in Russian) DOI: 10.37791/2687-0649-2022-17-1-39-54.

Tukmakov A.L., Tukmakov D.A. Numerical study of the influence of the parameters of dispersed particles on the deposition of the solid phase of an electrically charged polydisperse gas suspension. Bulletin of the Saratov University. New series. Series: Mathematics. Mechanics. Informatics. 2022. Vol. 22, no. 1. P. 90–102. (in Russian) DOI: 10.18500/1816-9791-2022-22-1-90-102.




DOI: http://dx.doi.org/10.14529/cmse220405