Параллельный алгоритм восстановления сенсорных данных в режиме реального времени для многоядерного процессора
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Zymbler M.L., Kraeva Y.A., Latypova E.A., et al. Cleaning Sensor Data in Intelligent Heating Control System. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2021. Vol. 10, no. 3. P. 16–36. (in Russian) DOI: 10.14529/cmse210302.
Ivanov S.A., Nikolskaya K.Y., Radchenko G.I., et al. Digital Twin of a City: Concept Overview. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2020. Vol. 9, no. 4. P. 5–23. (in Russian) DOI: 10.14529/cmse200401.
Epishev V.V., Isaev A.P., Miniakhmetov R.M., et al. Physiological Data Mining System For Elite Sports. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2013. Vol. 2, no. 1. P. 44–54. (in Russian) DOI: 10.14529/cmse130105.
Abdoulaev S.M., Lenskaia O.U., Gayazova A.O., et al. Short-Range Forecasting Algorithms Using Radar Data: Translation Estimate And Life-Cycle Composite Display. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2014. Vol. 3, no. 1. P. 17–32. (in Russian) DOI: 10.14529/cmse140102.
Berndt D.J., Clifford J. Using Dynamic Time Warping to Find Patterns in Time Series. Knowledge Discovery in Databases: Papers from the 1994 AAAI Workshop, Seattle, Washington, USA, July 1994. Technical Report WS-94-03 / ed. by U.M. Fayyad, R. Uthurusamy. 1994. P. 359–370.
Ding H., Trajcevski G., Scheuermann P., et al. Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 2008. Vol. 1, no. 2. P. 1542–1552. DOI: 10.14778/1454159.1454226.
Zymbler M.L., Poluyanov A.N. Parallel algorithm for imputation of missing values in a streaming time series in real time. Parallel Computational Technologies – 16th International Conference, PCT 2022, Dubna, Russia, March 29-31, 2022. Short papers and posters. Chelyabinsk: SUSU Publishing Center. 2022. P. 128–140. (in Russian) DOI: 10.14529/pct2022.
Khayati M., Lerner A., Tymchenko Z., Cudré-Mauroux P. Mind the Gap: An Experimental Evaluation of Imputation of Missing Values Techniques in Time Series. Proc. VLDB Endow. 2020. Vol. 13, no. 5. P. 768–782. DOI: 10.14778/3377369.3377383.
Batista G.E.A.P.A., Monard M.C. An Analysis of Four Missing Data Treatment Methods for Supervised Learning. Appl. Artif. Intell. 2003. Vol. 17, no. 5-6. P. 519–533. DOI: 10.1080/713827181.
Troyanskaya O.G., Cantor M.N., Sherlock G., et al. Missing value estimation methods for DNA microarrays. Bioinform. 2001. Vol. 17, no. 6. P. 520–525. DOI: 10.1093/bioinformatics/17.6.520.
Hsu H., Yang A.C., Lu M. KNN-DTW Based Missing Value Imputation for Microarray Time Series Data. J. Comput. 2011. Vol. 6, no. 3. P. 418–425. DOI: 10.4304/jcp.6.3.418-425.
Phan T., Poisson É.C., Bigand A., Lefebvre A. DTW-Approach for uncorrelated multivariate time series imputation. 27th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2017, Tokyo, Japan, September 25-28, 2017 / ed. by N. Ueda, S. Watanabe, T. Matsui, et al. 2017. P. 1–6. DOI: 10.1109/MLSP.2017.8168165.
Phan T., Caillault É.P., Lefebvre A., Bigand A. Dynamic time warping-based imputation for univariate time series data. Pattern Recognit. Lett. 2020. Vol. 139. P. 139–147. DOI: 10.1016/j.patrec.2017.08.019.
Keogh E.J., Pazzani M.J. Derivative Dynamic Time Warping. Proceedings of the 1st SIAM International Conference on Data Mining, SDM 2001, Chicago, IL, USA, April 5-7, 2001 / ed. by V. Kumar, R.L. Grossman. 2001. P. 1–11. DOI: 10.1137/1.9781611972719.1.
Wellenzohn K., Böhlen M.H., Dignös A., et al. Continuous Imputation of Missing Values in Streams of Pattern-Determining Time Series. Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017 / ed. by V. Markl, S. Orlando, B. Mitschang, et al. 2017. P. 330–341. DOI: 10.5441/002/edbt.2017.30.
Rakthanmanon T., Campana B.J.L., Mueen A., et al. Addressing Big Data Time Series: Mining Trillions of Time Series Subsequences Under Dynamic Time Warping. ACM Trans. Knowl. Discov. Data. 2013. Vol. 7, no. 3. P. 10:1–10:31. DOI: 10.1145/2500489.
Kraeva Y.A., Zymbler M.L. The use of MPI and OpenMP technologies for subsequence similarity search in very long time series on a computer cluster system with nodes based on the Intel Xeon Phi Knights Landing many-core processor. Numerical Methods and Programming. 2019. Vol. 20, no. 1. P. 29–44. (in Russian) DOI: 10.26089/NumMet.v20r104.
Kim S., Park S., Chu W.W. An Index-Based Approach for Similarity Search Supporting Time Warping in Large Sequence Databases. Proceedings of the 17th International Conference on Data Engineering, April 2-6, 2001, Heidelberg, Germany / ed. by D. Georgakopoulos, A. Buchmann. 2001. P. 607–614. DOI: 10.1109/ICDE.2001.914875.
Fu A.W., Keogh E.J., Lau L.Y.H., Ratanamahatana C. Scaling and Time Warping in Time Series Querying. Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005 / ed. by K. Böhm, C.S. Jensen, L.M. Haas, et al. 2005. P. 649–660. URL: http://www.vldb.org/archives/website/2005/program/paper/thu/p649-fu.pdf.
Supinski B.R. de, Scogland T.R.W., Duran A., et al. The Ongoing Evolution of OpenMP. Proc. IEEE. 2018. Vol. 106, no. 11. P. 2004–2019. DOI: 10.1109/JPROC.2018.2853600.
Dau H.A., Keogh E., Kamgar K., et al. The UCR Time Series Classification Archive. 2018. URL: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/ (accessed: 12.04.2022).
Mueen A., Keogh E.J., Zhu Q., et al. Exact Discovery of Time Series Motifs. Proceedings of the SIAM International Conference on Data Mining, SDM 2009, April 30 - May 2, 2009, Sparks, Nevada, USA. SIAM, 2009. P. 473–484. DOI: 10.1137/1.9781611972795.41.
Dolganina N., Ivanova E., Bilenko R., Rekachinsky A. HPC resources of South Ural State University. 16th International Conference on Parallel Computational Technologies, PCT 2022, Dubna, Russia, March 29-31, 2022, Revised Selected Papers. Communications in Computer and Information Science. Vol. 1618 / ed. by L. Sokolinsky, M. Zymbler. Springer, 2022. P. 43–55. DOI: 10.1007/978-3-031-11623-0_4.
Khayati M., Arous I., Tymchenko Z., Cudré-Mauroux P. ORBITS: Online Recovery of Missing Values in Multiple Time Series Streams. Proc. VLDB Endow. 2020. Vol. 14, no. 3. P. 294–306. DOI: 10.5555/3430915.3442429.
Anava O., Hazan E., Zeevi A. Online Time Series Prediction with Missing Data. Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, July 6-11, 2015. 2015. P. 2191–2199. URL: http://proceedings.mlr.press/v37/anava15.html.
Papadimitriou S., Sun J., Faloutsos C. Streaming Pattern Discovery in Multiple Time-Series. Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005 / ed. by K. Böhm, C.S. Jensen, L.M. Haas, et al. 2005. P. 697–708. DOI: 10.5555/1083592.1083674.
Balzano L., Chi Y., Lu Y.M. Streaming PCA and Subspace Tracking: The Missing Data Case. Proc. IEEE. 2018. Vol. 106, no. 8. P. 1293–1310. DOI: 10.1109/JPROC.2018.2847041.
Chlorine Dataset. URL: https://www.cs.cmu.edu/afs/cs/project/spirit-1/www/ (accessed: 03.09.2021).
BundesAmt Für Umwelt – Swiss Federal Office for the Environment. URL: https://www.hydrodaten.admin.ch/en (accessed: 03.09.2021).
Lozano A.C., Li H., Niculescu-Mizil A., et al. Spatial-temporal causal modeling for climate change attribution. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009 / ed. by J.F. Elder IV, F. Fogelman-Soulié, P.A. Flach, M.J. Zaki. ACM, 2009. P. 587–596. DOI: 10.1145/1557019.1557086.
Laña I., Olabarrieta I., Vélez M., Del Ser J. On the imputation of missing data for road traffic forecasting: New insights and novel techniques. Transportation Research Part C: Emerging Technologies. 2018. Vol. 90. P. 18–33. DOI: 10.1016/j.trc.2018.02.021.
Lefebvre A. MAREL Carnot data and metadata from Coriolis Data Centre. SEANOE. 2015. DOI: 10.17882/39754.
Lopukhov I. Real-Time Ethernet network: from theory to practical implementation. MAT: Modern automation technologies. 2010. Vol. 10, no. 3. P. 8–15.
Catalogue 2021. Emerson temperature sensors. URL: https://www.c-o-k.ru/library/catalogs/emerson/110477.pdf (accessed: 03.09.2021).
DOI: http://dx.doi.org/10.14529/cmse220305