Выявление устойчивых связей между показателями коннективности ЭЭГ и компонентами интеллекта

Татьяна Владимировна Авдеенко, Анастасия Юрьевна Тимофеева, Марина Шамильевна Муртазина, Ольга Михайловна Разумникова

Аннотация


Согласно гипотезе «нейронной эффективности» показатели интеллекта связаны со специфическими пространственными особенностями оптимальной функциональной активности мозга. Так как имеются исследования, не подтверждающие такой взаимосвязи, актуальным остается исследование вопроса ее устойчивости. Поэтому основная задача исследования заключается в поиске метрик коннективности ЭЭГ в состоянии покоя, устойчиво коррелирующих с показателями вербального и зрительно-пространственного компонентов интеллекта. В качестве потенциальных мер взаимосвязи исследуемых параметров выбраны коэффициенты корреляции Пирсона, Спирмена, полихорический коэффициент корреляции и их устойчивые аналоги, вычисленные на основе усечения, метода MCD, метода знаков. Для оценки устойчивости к выбросам применялся критерий поэлементного удаления (leave-one-out test, LOOT), на основе которого рассчитывался взвешенный робастный аналог коэффициентов корреляции. По степени отклонения от его исходного значения, рассчитанного на всей выборке, можно судить о чувствительности к выбросам. Показано, что коэффициенты корреляции, основанные на рангах и использующие усечение, наиболее устойчивы к выбросам. В результате выявлены устойчивые значимые корреляции между показателями интеллекта и коннективностью ЭЭГ в состоянии покоя, свидетельствующие о потенциально эффективной преднастройке функциональных нейронных сетей с объединением локальных и дистантно распределенных нейронных ансамблей.

Ключевые слова


ЭЭГ; состояние покоя; коннективность сетей мозга; интеллект; меры на графах; робастность; корреляция

Полный текст:

PDF

Литература


Haier R.J., Siegel B.V.Jr., Nuechterlein K.H., et al. Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence. 1988. Vol. 12, no. 2. P. 199–217. DOI: 10.1016/0160-2896(88)90016-5.

Haier R.J., Siegel B., Tang C., et al. Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence. 1992. Vol. 16, no. 3–4. P. 415–426. DOI: 10.1016/0160-2896(92)90018-M.

Neubauer A.C., Fink A. Intelligence and neural efficiency: measures of brain activation versus measures of functional connectivity in the brain. Intelligence. 2009. Vol. 37, no. 2. P. 223–229. DOI: 10.1016/j.intell.2008.10.008.

Jung R.E., Haier R.J. The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences. 2007. Vol. 30, no. 2. P. 135–154. DOI: 10.1017/S0140525X07001185.

Dreszer J., Grochowski M., Lewandowska M., et al. Spatiotemporal complexity patterns of resting-state bioelectrical activity explain fluid intelligence: Sex matters. Human brain mapping. 2020. Vol. 41, no. 17. P. 4846–4865. DOI: 10.1002/hbm.25162.

Langer N., Pedroni A., Gianotti L.R.R., et al. Functional brain network efficiency predicts intelligence. Hum. Brain Map. 2012. Vol. 33, no. 6. P. 1393–1406. DOI: 10.1002/hbm.21297.

Zakharov I., Tabueva A., Adamovich T., et al. Alpha Band Resting-State EEG Connectivity Is Associated With Non-verbal Intelligence. Front. Hum. Neurosci. 2020. Vol. 14. P. 10. DOI: 10.3389/fnhum.2020.00010.

Luo S., Chen R., Yang Z., Li K. Intelligence level might be predicted by the characteristics of EEG signals at specific frequencies and brain regions. Journal of Mechanics in Medicine and Biology. 2021. Vol. 21, no. 9. P. 2140047. DOI: 10.1142/S0219519421400479.

Dubois J., Galdi P., Han Y., et al. Resting-state functional brain connectivity best predicts the personality dimension of openness to experience. Personality neuroscience. 2018. Vol. 1. P. e6. DOI: 10.1017/pen.2018.8.

Kruschwitz J.D., Waller L., Daedelow L.S., et al. General, crystallized and fluid intelligence are not associated with functional global network efficiency: a replication study with the human connectome project 1200 data set. Neuroimage. 2018. Vol. 171. P. 323–331. DOI: 10.1016/j.neuroimage.2018.01.018.

Coemets E.H., Liimets H.I. Intellectual Tasks—Series 730. Russian Version of The Amthauer’s Test Based on the Estonian Methodic. Novosibirsk: Novosibirsk NSU Publisher, 1973. 24 p.

Li T., Xue T., Wang B., Zhang J. Decoding Voluntary Movement of Single Hand Based on Analysis of Brain Connectivity by Using EEG Signals. Frontiers in human neuroscience. 2018. Vol. 12. P. 381. DOI: 10.3389/fnhum.2018.00381.

Mehraram R., Kaiser M., Cromarty R., et al. Weighted network measures reveal differences between dementia types: An EEG study. Human brain mapping. 2020. Vol. 41, no. 6. P. 1573–1590. DOI: 10.1002/hbm.24896.

Onnela J.P., Saramäki J., Kertész J., Kaski K. Intensity and coherence of motifs in weighted complex networks. Physical Review E. 2005. Vol. 71, no. 6. P. 065103. DOI: 10.1103/PhysRevE.71.065103.

Gareth J. An Introduction to Statistical Learning: with Applications in R. Berlin: Springer, 2013.

Shevlyakov G., Smirnov P. Robust estimation of the correlation coefficient: An attempt of survey. Austrian Journal of Statistics. 2011. Vol. 40, no. 1–2. P. 147–156.

Roscino A., Pollice A. A generalization of the polychoric correlation coefficient. Data analysis, classification and the forward search / ed. by S. Zani, A. Cerioli, M. Riani, et al. Springer, 2006. P. 135–142. DOI: 10.1007/3-540-35978-8_16.

Blomqvist N. On a measure of dependence between two random variables. The Annals of Mathematical Statistics. 1950. Vol. 21. P. 593–600.

Gnanadesikan R., Kettenring J.R. Robust estimates, residuals and outlier detection with multiresponse data. Biometrics. 1972. Vol. 28. P. 81–124.

Shevlyakov G.L. On robust estimation of a correlation coefficient. Journal of Mathematical Sciences. 1997. Vol. 83, no. 3. P. 434–438. DOI: 10.1007/BF02400929.

Rousseeuw P.J. Least median of squares regression. Journal of the American Statistical Association. 1984. Vol. 79. P. 871–880.

Niven E.B., Deutsch C.V. Calculating a robust correlation coefficient and quantifying its uncertainty. Computers and Geosciences. 2012. Vol. 40. P. 1–9. DOI: 10.1016/j.cageo.2011.06.021.

Coglin L.L. Mechanisms and functions of theta rhythms. Annual Rev. Neurosci. 2013. Vol. 36, no. 1. P. 295–312. DOI: 10.1146/annurev-neuro-062012-170330.

Kumar J., Bhuvaneswari P. Analysis of electroencephalography (EEG) signals and its categorization A study. Procedia engineering. 2012. Vol. 38. P. 2525–2536. DOI: 10.1016/j.proeng.2012.06.298.

Harmony T. The functional significance of delta oscillations in cognitive processing. Frontiers in Integrative Neuroscience. 2013. Vol. 7. P. 83. DOI: 10.3389/fnint.2013.00083.




DOI: http://dx.doi.org/10.14529/cmse220402