Численная реализация метода поверхностного движения для решения задач линейного программирования
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Optimization in Large Scale Problems: Industry 4.0 and Society 5.0 Applications / ed. by M. Fathi, M. Khakifirooz, P.M. Pardalos. Cham, Switzerland: Springer, 2019. XI, 340 p. DOI: 10.1007/978-3-030-28565-4.
Kopanos G.M., Puigjaner L. Solving Large-Scale Production Scheduling and Planning in the Process Industries. Cham, Switzerland: Springer, 2019. 291 p. DOI: 10.1007/978-3-030-01183-3.
Schlenkrich M., Parragh S.N. Solving large scale industrial production scheduling problems with complex constraints: an overview of the state-of-the-art. 4th International Conference on Industry 4.0 and Smart Manufacturing. Procedia Computer Science. Vol. 217 / ed. by F. Longo, M. Affenzeller, A. Padovano, W. Shen. Elsevier, 2023. P. 1028–1037. DOI: 10.1016/J.PROCS.2022.12.301.
Sokolinskaya I.M., Sokolinsky L.B. On the Solution of Linear Programming Problems in the Age of Big Data. Parallel Computational Technologies. PCT 2017. Communications in Computer and Information Science, vol. 753. / ed. by L. Sokolinsky, M. Zymbler. Cham, Switzerland: Springer, 2017. P. 86–100. DOI: 10.1007/978-3-319-67035-5_7.
Branke J. Optimization in Dynamic Environments. Evolutionary Optimization in Dynamic Environments. Genetic Algorithms and Evolutionary Computation, vol. 3. Boston, MA: Springer, 2002. P. 13–29. DOI: 10.1007/978-1-4615-0911-0_2.
Dantzig G.B. Linear programming and extensions. Princeton, N.J.: Princeton university press, 1998. 656 p.
Zorkaltsev V., Mokryi I. Interior point algorithms in linear optimization. Journal of applied and industrial mathematics. 2018. Vol. 12, no. 1. P. 191–199. DOI: 10.1134/S1990478918010179.
Mamalis B., Pantziou G. Advances in the Parallelization of the Simplex Method. Algorithms, Probability, Networks, and Games. Lecture Notes in Computer Science, vol. 9295 / ed. by C. Zaroliagis, G. Pantziou, S. Kontogiannis. Cham: Springer, 2015. P. 281–307. DOI: 10.1007/978-3-319-24024-4_17.
Olkhovsky N.A., Sokolinsky L.B. Surface Movement Method for Linear Programming. 2024. DOI: 10.48550/arXiv.2404.12640. arXiv: 2404.12640.
Sokolinsky L.B., Sokolinskaya I.M. Apex Method: A New Scalable Iterative Method for Linear Programming. Mathematics. 2023. Vol. 11, no. 7. P. 1654. DOI: 10.3390/MATH11071654.
Maltsev A. The basics of linear algebra. Moskow: Science. The main editorial office of the phys-math literature, 1970. 402 p. (in Russian).
Vasin V.V., Eremin I.I. Operators and Iterative Processes of Fejér Type. Theory and Applications. Berlin, New York: Walter de Gruyter, 2009. 155 p. Inverse and III-Posed Problems Series. DOI: 10.1515/9783110218190.
Gould N.I. How good are projection methods for convex feasibility problems? Computational Optimization and Applications. 2008. Vol. 40, no. 1. P. 1–12. DOI: 10.1007/S10589-007-9073-5.
Sokolinsky L.B. BSF: A parallel computation model for scalability estimation of iterative numerical algorithms on cluster computing systems. Journal of Parallel and Distributed Computing. 2021. Vol. 149. P. 193–206. DOI: 10.1016/j.jpdc.2020.12.009.
Sokolinsky L.B. BSF-skeleton: A Template for Parallelization of Iterative Numerical Algorithms on Cluster Computing Systems. MethodsX. 2021. Vol. 8. Article number 101437. DOI: 10.1016/j.mex.2021.101437.
Boisvert R.F., Pozo R., Remington K.A. The Matrix Market Exchange Formats: Initial Design: tech. rep. / NISTIR 5935. National Institute of Standards; Technology. Gaithersburg, MD, 1996. P. 14. URL: https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir5935.pdf.
Sokolinsky L.B., Sokolinskaya I.M. FRaGenLP: A Generator of Random Linear Programming Problems for Cluster Computing Systems. Parallel Computational Technologies. PCT 2021. Communications in Computer and Information Science, vol. 1437 / ed. by L. Sokolinsky, M. Zymbler. Cham: Springer, 2021. P. 164–177. DOI: 10.1007/978-3-030-81691-9_12.
Gay D.M. Electronic mail distribution of linear programming test problems. Mathematical Programming Society COAL Bulletin. 1985. Vol. 13. P. 10–12.
Dolganina N., Ivanova E., Bilenko R., Rekachinsky A. HPC Resources of South Ural State University. Parallel Computational Technologies. PCT 2022. Communications in Computer and Information Science, vol. 1618 / ed. by L. Sokolinsky, M. Zymbler. Cham: Springer, 2022. P. 43–55. DOI: 10.1007/978-3-031-11623-0_4.
Klee V., Minty G.J. How good is the simplex algorithm? Inequalities - III. Proceedings of the Third Symposium on Inequalities Held at the University of California, Los Angeles, Sept. 1-9, 1969 / ed. by O. Shisha. New York-London: Academic Press, 1972. P. 159–175.
DOI: http://dx.doi.org/10.14529/cmse240301