Обзор современных моделей представления дактилоскопических изображений

Дарья Николаевна Лепихова, Владимир Юльевич Гудков, Александра Александровна Кирсанова

Аннотация


Идентификация человека по отпечаткам пальцев сегодня является наиболее распространенным методом биометрической идентификации. В статье приводится обзор современных моделей компьютерного представления изображений отпечатков пальцев и методов сравнения отпечатков на базе этих моделей. Рассматриваются представления отпечатка в виде множества частных признаков, множества общих признаков, множества папиллярных линий, а также в виде топологического объекта, содержащего комбинацию признаков. Сформулированы основные преимущества и недостатки этих представлений. Предлагается классификация моделей представления дактилоскопических изображений по степени полноты их описания. Каждый уровень предложенной модели описывает изображение с помощью какой-либо его характеристики (частные признаки, общие признаки, расположение и плотность папиллярных линий, поле направлений) либо в виде некоторого топологического объекта на более высоком уровне. При этом модель каждого уровня может использоваться как в виде самостоятельного представления, так и в комбинации с моделями других уровней, расширяя и дополняя описание изображения. Обзор моделей и методов идентификации опирается на широкий круг патентных материалов, научных статей, свидетельств о регистрации программ за последние несколько лет, что подтверждает актуальность проблемы и проведенного исследования.


Ключевые слова


биометрическая идентификация; отпечаток пальца; шаблон отпечатка пальца

Полный текст:

PDF

Литература


Arkabaev D.I., Gudkov V.U. Sposob grebnevogo scheta na osnove topologii daktiloskopicheskogo uzora [Method of Ridge Count Based on Topology]. Patent 2444058, G 06 K 9/52 № 2010110115/08, reg. Mar., 17, 2010; pub. Feb., 27, 2012; no. 6. 9 p.

Arutyunyan A.R., Ushmaev O.S. The Influence of Strain on the Quality of Biometric Fingerprint Identification. Informatics and Applications. 2009. vol. 4. no. 3. pp. 12–21. (in Russian)

Bokov A.C., Chirkin D.M., Gudkov V.U. Certificate of State Registration of the Computer Program 2017617796. Russian Federation. Avtomatizirovannaya daktiloskopicheskaya identifikatsionnaya sistema AFIS Enterprise Edition, versiya 9.0 – ADIS Sonda 9.0 E [Authomatic Fingerprint Identification System Enterprise Edition v. 9.0 – AFIS Sonda 9.0 E]. Rightsholder – Sonda Pro Ltd. no 2017611004; application date 08.02.2017; registration date 12.07.2017; published 12.07.2017. 1 p.

Gonzalez R.C., Woods R.E. Digital image processing. 2006. 1072 p.

Gordeeva (Lepikhova) D.N., Gudkov V.U. Fingerprint recognition. Vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta. Seriya "Priborostroenie". Specialniy vypusk "Biotehnologii" [Bulletin of Moskow State Technic Univercity. Series: Iinstrumentation. Special Volume: Biotechnologies]. 2011. pp. 47–58. (in Russian)

GOST R ISO/MEK 19794-2-2013 Informatsionnye tekhnologii (IT). Biometriya. Formaty obmena biometricheskimi dannymi. Chast' 2. Dannye izobrazheniya otpechatka pal'tsa – kontrol'nye tochki. Izdanie ofitsial'noe [ISO/IEC Information technologies. Biometrics. Biometric data interchange formats. Part 2. Finger minutiae data. Official Edition]. Мoscow. Standartinform. 2015. 94 p.

Gudkov V.U. Metody pervoi i vtoroi obrabotki daktiloskopicheskikh izobrazhenii [Methods for First and Second Fingerprint Images Processing]. Miass, Geotur, 2009. 237 p.

Gudkov V.U. Ridge Count Model Based on Fingerprint Topology. Vestnik Chelyabinskogo gosudarstvennogo universiteta [Bulletin of Chelyabinsk State Univercity]. 2011. no. 13, pp. 99–108 (in Russian)

Gudkov V.U. Sposob matematicheskogo opisaniya i identifikatsii otpechatkov pal'tsev [Method of Mathematical Description and Identification of Fingerprints]/red. by Corresponding Member of RAS Arlazarov V.L. and Doctor of Technical Sciences, Professor Emeljanov N.E. //Obrabotka izobrazhenii i analiz dannykh: Trudy ISA RAN. LIBROKOM, 2008. vol. 38. pp. 336–356. (in Russian)

Gudkov V.U., Lepikhova D.N. Effect of False Minutiaes on Fingerprint Matching Quality. 23 Mezhdunarodnaya konferentsiya po komp'yuternoi grafike i zreniyu GrafiKon'2013: Trudy konferentsii (Vladivostok, 16 -20 sentyabrya 2013) [23th International Conference on Computer Graphics and Vision GraphiCon'2013: Proceedings of the International Scientific Conference (Vladivostok, Russia, 16–20 September 2013)]. 2013. pp. 314–315. (in Russian)

Samischenko S.S. Atlas of Unusual Papillary Patterns. Moscow, Jurisprudence, 2001. 320 p.

Ushmaev O.S., Arutyunyan A.R. Method for Assessing quality of Biometric Identificationin in Operating Conditions on Fingerprint Identification' Example. 19 Mezhdunarodnaya konferentsiya po komp'yuternoi grafike i zreniyu GrafiKon'2009: Trudy konferentsii (Moskva, 5-9 oktyabrya 2009) [19th International Conference on Computer Graphics and Vision GraphiCon'2009: Proceedings of the International Scientific Conference (Moscow, Russia, 5-9 October 2009)]. MAX PRESS. 2009. pp. 232–235.

Edzhubov L.G., Karpuhina E.S., Myasnyankina V.N., etc. Bank dannykh detal'nogo opisaniya papillyarnykh uzorov [Data Bank of Papillary Patterns Detailed Description]. /red. by Edzhubov L.G. digest of scientific articles M: Pub. center MIA, 2002. pp. 304–311. (in Russian)

Edzhubov L.G., Litinsky S.A. Sposob Avtomaticheskogo Sravnitel'nogo Issledovaniya daktiloskopicheskikh otpechatkov [The method of automatic comparative study of fingerprints]. Certificate of authorship 138095 USSR, G 06 K 9/00 no 701272/31; reg. Jan. 17, 1959; pub. Sep. 18, 1961. vol. 9. 9 p.

Bebis G., Deaconu T., Georgiopoulos M. Fingerprint Identification Using Delaunay Triangulation. Proceedings of the International Conference on Information Intelligence and Systems (31 Oct. – 3 Nov. 1999, Bethesda, MD, USA). 1999. pp. 452–459. DOI: 10.1109/ICIIS.1999.810315

Bolle R.M., Connel J.Y., Pankanti S., et al. Guide to biometrics. New York: Springer-Verlag, 2004. 368 p.

Cao K., Jain A.K. Latent Orientation Field Estimation via Convolutional Neural Network. Proceedings of the 2015 International Conference on Biometrics ICB. Phuket, Thailand , May 2015. pp. 349–356. DOI: 10.1109/ICB.2015.7139060

Capelli R., Ferrara M., Maltoni D. Fingerprint Indexing Based on Minutia Cylinder-Code. IEEE transactions on pattern analysis and machine intelligence. 2011. vol. 33, no. 5, pp. 1051–1057. DOI: 10.1109/TPAMI.2010.228

Chandrasekaran A., Thuraisingham B. Fingerprint Matching Algorithm Based on Tree Comparison Using Ratios of Relational Distances. Proceedings of the The Second International Conference on Availability, Reliability and Security ARES’07 (10-13 April 2007, Vienna, Austria). 2007. pp. 273–280. DOI: 10.1109/ARES.2007.90

Choi H., Choi K., Kim J. Fingerprint Matching Incorporating Ridge Features With Minutiae. IEEE Transactions on Information Forensics and Security. 2011. vol. 6, no. 2, pp. 338–345. DOI: 10.1109/TIFS.2010.2103940

Dorizzi B., Cappelli R., Ferrara M., et al. Fingerprint and On-Line Signature Verification Competitions at ICB 2009. In Proceedings of the International Conference on Biometrics (ICB 2009). June 2-5, 2009, Alghero, Italy. 2009. pp. 725–732. DOI: 10.1007/978-3-642-01793-3_74

Fang G., Srihari S.N., Srinivasan H. et al. Use of Ridge Points in Partial Fingerprint Matching. Biometric Technology for Human Identification IV. 2007. pp. 65390D1-65390D9. DOI: 10.1117/12.718941

Feng J., Zhou J. A Performance Evaluation of Fingerprint Minutia Descriptors. In Proceedings of the International Conference on Hand-Based Biometrics ICHB (17–18 Nov. 2011, Hong Kong, China). 2011. DOI: 10.1109/ICHB.2011.6094350

Jain A.K., Cao K. Fingerprint Image Analysis: Role of Orientation Path and Ridge Structure Dictionaries. Geometry Driven Statistics. 2015. pp. 288–310. DOI: 10.1002/9781118866641

Jiang X., Yau W.Y. Fingerprint Minutiae Matching Based on the Local and Global Structures. In Proceedings of the 15th International Conference on Pattern Recognition ICPR 2000 (3-7 Sept. 2000, Barcelona, Spain). 2000. pp. 1038–1041. DOI: 10.1109/ICPR.2000.906252

Júnior P., de Nazare-Junior A., Menotti D. A Complete System for Fingerprint Authentication Using Delaunay Triangulation. Re-conhecimento de Padroes. DECOM-UFOP, 2010. pp. 1–7.

Maltoni D., Maio D., Jain A.K., et al. Handbook of Fingerprint Recognition. London: Springer-Verlag, 2009. 496 p. DOI: 10.1007/978-1-84882-254-2

Medina-Perez M.A., Garcia-Borroto M., Gutierrez-Rodriguez A.E., et al. Improving Fingerprint Verification Using Minutiae Triplets. Sensors, 2012. vol. 12. pp. 3418–3437. DOI: 10.3390/s120303418

Segundo M.P., Lemes R. Pore-based Ridge Reconstruction for Fingerprint Recognition. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2015). 7-12 June 2015, Boston, Massachusetts, USA. 2015. pp. 128–133. DOI: 10.1109/CVPRW.2015.7301328

Sha L., Zhao F., Tang X. Minutiae-Based Fingerprint Matching Using Subset Combination. In Proceedengs of the 18th International Conference on Pattern Recognition ICPR 2006 (20 -24 Aug. 2006, Hong Kong). 2006. pp. 566–569. DOI: 10.1109/ICPR.2006.802

Sherlock B., Monro D. A Model for Interpreting Fingerprint Topology. Pattern Recognition, 1993. vol. 26, no. 7. pp. 1047–1055. DOI: 10.1016/0031-3203(93)90006-I

Sparrow M.K., Sparrow P.J. A Topological Approach to the Matching of Single Fingerprints: Development of Algorithms for use on Latent Finger Marks. US dep. comer. nat. bur. stand. spec. pub., 1985. № 500–126. 61 p.

The NSTC Subcommittee on Biometrics. Fingerprint Recognition. Available at: https://www.fbi.gov/file-repository/about-us-cjis-fingerprints_biometrics- biometric-center-of-excellences-fingerprint-recognition.pdf (accessed: 16.10.2017).

Uz T., Bebis G., Erol A., et al. Minutiae Based Template Synthesis and Matching for Fingerprint Authentication. In Proceedings of the First IEEE International Conference on Biometrics: Theory, Applications, and Systems BTAS 2007 (27-29 Sept. 2007, Crystal City, VA, USA). 2007. pp. 1–8. DOI: 10.1109/BTAS.2007.4401958

Vidyadevi G. Biradar, Sarojadevi H. Fingerprint Ridge Orientation Extraction: A Review of State of the Art Techniques. International Journal of Computer Applications, 2014. vol. 91, no. 3. pp. 8–13. DOI: 10.5120/15859-4773

Wang J., Zhen Ping Lo P., inventors; Morphotrack LLC, assignee. Minutiae Grouping for Distorted Fingerprint Matching. US Patent Application Publication 2017/0140193 A1, May, 18, 2017.

Wang L., Bhalerao A., Wilson R., inventors; Warwick Warp Ltd, assignee. Fingerprint Matching Method and Apparatus. US Grant 8588484B2. Nov., 19. 2013.

Zhen Ping Lo P., Chen H., inventors; Morphotrack LLC, assignee. Feature-Based Matcher for Distorted Fingerprint Matching. US Patent Application Publication 2017/0140192 A1, May, 18, 2017.

Zheng F., Yang C. Latent Fingerprint Match using Minutia Spherical Coordinate Code. In Proceedengs of the 8th IAPR International Conference on Biometrics (19-22 May 2015, Phuket, Thailand). 2015. pp. 357–362. DOI: {10.1109/ICB.2015.7139061

Zhou J., Gu J. A Model-based Method for the Computation of Fingerprints’ Orientation Field. IEEE Transactions on Image Processing, 2004. vol. 13, no. 6, pp. 821–835. DOI: 10.1109/TIP.2003.822608

Zhu H., Zhen Ping Lo P., Chen H., inventors; Morphotrack LLC., assignee. Fingerprint Matching Using Virtual Minutiae. US Patent Application Publication 2017/0140207 A1, Apr., 18, 2017.




DOI: http://dx.doi.org/10.14529/cmse180104