Гарантированное оценивание параметров дискретных моделей хаотических процессов
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Devaney R.L. An Introduction to Chaotic Dynamical Systems. Addison-Wesley, 1989. 336 p.
Sprott J.C. Chaos and Time-Series Analysis. Oxford University Press, 2003. 507 p.
Skiadas C.H., Skiadas C. Handbook of Applications of Chaos Theory. CRC Press, 2016. 934 p.
Thompson J.M.T. Chaos, Fractals and Their Applications. International Journal of Bifurcation and Chaos. 2016. vol. 26, no. 13. DOI: 10.1142/S0218127416300354.
Anosov O.L., Butkovskii O.Ya., Kravtsov Yu.A. Reconstruction of Dynamical Systems from Chaotic Time Series: Short Review. Izvestiya vuzov. Prikladnaya nelineinaya dinamika [Izvestiya VUZ. Applied Nonlinear Dynamics]. 2000. vol. 8, no. 1. pp. 29–48. (in Russian)
Bezruchko B.P., Smirnov D.A. Contemporary Problems in Modeling from Time Series. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Fizika [Izvestiya of Saratov University. New Series. Series Physics]. 2006. vol. 6, no. 1–2. pp. 3–27. (in Russian)
Aguirre L.A., Letellier C. Modeling Nonlinear Dynamics and Chaos: A Review. Mathematical Problems in Engineering. 2009. Article ID 238960. DOI: 10.1155/2009/238960.
Voss H.U., Timmer J., Kurths J. Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements. International Journal of Bifurcation and Chaos. 2004. vol. 14, no. 6. pp. 1905–1933. DOI: 10.1142/S0218127404010345.
Gotmare A., Bhattacharjee S.S., Patidar R., George N.V. Swarm and Evolutionary Computing Algorithms for System Identification and Filter Design: A Comprehensive Review. Swarm and Evolutionary Computation. 2017. vol. 32. pp. 68–84. DOI: 10.1016/j.swevo.2016.06.007.
Smirnov D.A., Vlaskin V.S., Ponomarenko V.I. Estimation of Parameters in One-Dimensional Maps from Noisy Chaotic Time Series. Physics Letters A. 2005. vol. 336. pp. 448–458. DOI: 10.1016/j.physleta.2004.12.092.
Jafari S., Sprott J.C., Pham V.-T. et al. A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints. International Journal of Bifurcation and Chaos. 2014. vol. 24, no. 10. DOI: 10.1142/S021812741450134X.
Liu L., Hu J., Li H. et al. Parameter Estimation of a Class One-Dimensional Discrete Chaotic System. Discrete Dynamics in Nature and Society. 2011. Article ID 696017. DOI: 10.1155/2011/696017.
Nakamura T., Hirata Y., Judd K. et al. Improved Parameter Estimation from Noisy Time Series for Nonlinear Dynamical Systems. International Journal of Bifurcation and Chaos. 2007. vol. 17, no. 5. pp. 1741–1752. DOI: 10.1142/S021812740701804X.
Walker D.M. Parameter Estimation Using Kalman Filters with Constraints. International Journal of Bifurcation and Chaos. 2006. vol. 16, no. 4. pp. 1067–1078. DOI: 10.1142/S0218127406015325.
Judd K. Fifty Years of Forecasting Chaos and the Shadow of Imperfect Models. Nonlinear Theory and Its Applications. 2016. vol. 7, no. 2. pp. 234–249. DOI: 10.1587/nolta.7.234.
Leung H., Zhu Z., Ding Z. An Aperiodic Phenomenon of the Extended Kalman Filter in Filtering Noisy Chaotic Signals. IEEE Transactions on Signal Processing. 2000. vol. 48, no. 6. pp. 1807–1810. DOI: 10.1109/78.845941.
Feng J., Fan H., Tse C.K. Convergence Analysis of the Unscented Kalman Filter for Filtering Noisy Chaotic Signals. Proceedings of the 2007 IEEE International Symposium on Circuits and Systems (ISCAS) (New Orleans, USA, May 27–30, 2007), 2007. pp. 1681–1684. DOI: 10.1109/ISCAS.2007.377916.
Kurzhanski A.B., Furasov V.D. Identification of Nonlinear Processes: Guaranteed Estimates. Automation and Remote Control. 1999. vol. 60, no. 6. pp. 814–828.
Jaulin L., Kieffer M., Didrit O., Walter E. Applied Interval Analysis. Springer, 2001. 379 p. DOI: 10.1007/978-1-4471-0249-6.
Raissi T., Ramdani N., Candau Y. Set Membership State and Parameter Estimation for Systems Described by Nonlinear Differential Equations. Automatica. 2004. vol. 40, no. 10. pp. 1771–1777. DOI: 10.1016/j.automatica.2004.05.006.
Abdallah F., Gning A., Bonnifait P. Box Particle Filtering for Nonlinear State Estimation Using Interval Analysis. Automatica. 2008. vol. 44, no. 3. pp. 807–815. DOI: 10.1016/j.automatica.2007.07.024.
Kumkov S.I., Mikushina Y.V. Interval Approach to Identification of Catalytic Process Parameters. Reliable Computing. 2013. vol. 19, no. 2. pp. 197–214.
Paulen R., Villanueva M., Fikar M., Chachuat B. Guaranteed Parameter Estimation in Nonlinear Dynamic Systems Using Improved Bounding Techniques. Proceedings of the 2013 European Control Conference (ECC) (Zurich, Switzerland, July 17–19, 2013), 2013. pp. 4514–4519.
Blanchini F., Miani S. Set-Theoretic Methods in Control. Birkhauser, 2015. 630 p. DOI: 10.1007/978-3-319-17933-9.
Prostiakov P.V. Fractal Structure for the Guaranteed Observation Problem. An Example. Applied Mathematics Letters. 2001. vol. 14, no. 4. pp. 507–511. DOI: 10.1016/S0893-9659(00)00185-3.
Shary S.P. A New Technique in Systems Analysis under Interval Uncertainty and Ambiguity. Reliable Computing. 2002. vol. 8, no. 5. pp. 321–418. DOI: 10.1023/A:1020505620702.
Sheludko A.S., Shiryaev V.I. The Algorithm of Guaranteed Parameter Estimation for One-Dimensional Chaotic Map. (in Russian) Informatsionnye Tekhnologii [Information Technologies]. 2015. vol. 21, no. 1. pp. 30–34.
Sheludko A.S., Shiryaev V.I. Guaranteed State and Parameter Estimation for One-Dimensional Chaotic System. Proceedings of the 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) (Chelyabinsk, Russia, May 19–20, 2016), 2016. DOI: 10.1109/ICIEAM.2016.7911580.
DOI: http://dx.doi.org/10.14529/cmse180103