Молекулярная динамика в силовом поле FF14SB в воде TIP4P-EW, и в силовом поле FF15IPQ в воде SPC/Eb: сравнительный анализ на GPU и CPU
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Suplatov D.A., Popova N.N., Kopylov K.E., Shegay M.V., Voevodin Vl.V., Švedas V.K. Hybrid Computing Clusters to Study Protein Structure, Function and Regulation. Vestnik Yuzho-Uralskogo gosudarstvennogo universiteta. Seriya “Matematicheskoe modelirovanie i programmirovanie” [Bulletin of South Ural State University. Series: Mathematical Modeling, Programming & Computer Software]. 2017. vol. 6, no. 4. pp. 74–90. (in Russian) DOI: 10.14529/cmse170406.
Godwin R.C., Melvin R., Salsbury F.R. Molecular Dynamics Simulations and Computer-Aided Drug Discovery “Computer-Aided Drug Discovery” (Wei Zhang) Springer, New York. 2016. pp. 1–31. DOI: 10.1007/7653_2015_41.
Shaw D.E. et al. Anton, a Special-Purpose Machine for Molecular Dynamics Simulation. Communications of the ACM. July 2008. vol. 51, no. 7. pp. 91–97. DOI: 10.1145/1250662.1250664.
Shaw D.E. et al. Anton 2: Raising the Bar for Performance and Programmability in a Special-Purpose Molecular Dynamics Supercomputer. International Conference for High Performance Computing, Networking, Storage and Analysis (SC '14): Proceedings of the International Conference (New Orleans, LA, USA, November 16-21, 2014). IEEE Press. 2014. pp. 41–53. DOI: 10.1109/SC.2014.9.
Nobile M.S. et al. Graphics Processing Units in Bioinformatics, Computational Biology and Systems Biology. Briefings in Bioinformatics. 2016. vol. 18, no. 5. pp. 870–885. DOI: 10.1093/bib/bbw058.
Salomon-Ferrer R. et al. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. Journal of Chemical Theory and Computation. 2013. vol. 9, no. 9. pp. 3878–3888. DOI: 10.1021/ct400314y.
Götz A.W. et al. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. Journal of Chemical Theory and Computation. 2012. vol. 8, no. 5. pp. 1542–1555. DOI: 10.1021/ct200909j.
Dokumentacija k programmnomu obespecheniju GROMACS [GROMACS Software Manual]. Available at: http://manual.gromacs.org/documentation/2018/user-guide/forcefields.html (accessed: 25.07.2018).
Maier J.A. et al. FF14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from FF99SB. Journal of Chemical Theory and Computation. 2015. vol. 11, no. 8. pp. 3696–3713. DOI: 10.1021/acs.jctc.5b00255.
Dokumentacija k programmnomu obespecheniju AMBER [AMBER Software Manual]. Available at: http://ambermd.org/doc12/Amber17.pdf, P. 33 (accessed: 25.07.2018).
Debiec K.T. et al. Further Along the Road Less Traveled: AMBER FF15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model. Journal of Chemical Theory and Computation. 2016. vol. 12, no. 8. pp. 3926–3947. DOI: 10.1021/acs.jctc.6b00567.
Onufriev A. Implicit Solvent Models in Molecular Dynamics Simulations: A Brief Overview. Annual Reports in Computational Chemistry. 2008. vol. 4. pp. 125–137. DOI: 10.1016/S1574-1400(08)00007-8.
Wong V., Case D.A. Evaluating Rotational Diffusion from Protein MD Simulations. The Journal of Physical Chemistry B. 2008. vol. 112, no. 19. pp. 6013–6024. DOI: 10.1021/jp0761564.
Horn H.W. et al. Development of an Improved Four-Site Water Model for Biomolecular Simulations: TIP4P-Ew. The Journal of Chemical Physics. 2004. vol. 120, no. 20. pp. 9665–9678. DOI: 10.1063/1.1683075.
Takemura K., Kitao A. Water Model Tuning for Improved Reproduction of Rotational Diffusion and NMR Spectral Density. The Journal of Physical Chemistry B. 2012. vol. 116, no. 22. pp. 6279–6287. DOI: 10.1021/jp301100g.
Pierce L. et al. Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics. Journal of Chemical Theory and Computation. 2012. vol. 8, no. 9. pp. 2997–3002. DOI: 10.1021/ct300284c.
Suplatov D., Kopylov K., Sharapova Y., Švedas V. Human p38α Mitogen-Activated Protein Kinase in the Asp168-Phe169-Gly170-in (DFG-in) State Can Bind Allosteric Inhibitor Doramapimod. Journal of Biomolecular Structure and Dynamics. 2018. DOI: 10.1080/07391102.2018.1475260.
Sharapova Y., Suplatov D., Švedas V. Neuraminidase A from Streptococcus Pneumoniae Has a Modular Organization of Catalytic and Lectin Domains Separated by a Flexible Linker. The FEBS Journal. 2018. vol. 285, no. 13. pp. 2428–2445. DOI: 10.1111/febs.14486.
Crooke A.K. et al. CcpA-Independent Glucose Regulation of Lactate Dehydrogenase 1 in Staphylococcus Aureus. PLoS One. 2013. vol. 8, no. 1. pp. e54293. DOI: 10.1371/journal.pone.0054293.
Suplatov D., Švedas V. Study of Functional and Allosteric Sites in Protein Superfamilies. Acta Naturae. 2015. vol. 7, no. 4, pp. 34–45.
Voevodin Vl.V., Zhumatiy S.A., Sobolev S.I., Antonov A.S., Bryzgalov P.A., Nikitenko D.A., Stefanov K.S., Voevodin Vad.V. Practice of the “Lomonosov” Supercomputer. Otkrytye Sistemy [Open Systems]. 2012. vol. 7, pp. 36–39 (in Russian).
DOI: http://dx.doi.org/10.14529/cmse190105