A conceptual model of a real virtual laboratory

Vyacheslav M. Dmitriev, Lev A. Gembuh

Abstract


The article proposes a structural and functional scheme of a real-virtual laboratory, defines the main blocks of a real-virtual laboratory and the connections between them. For the purposes of formalization, information education modules have been introduced, illustrating the transformation of input and internal variables and characteristics into output by each block. Some remote real-virtual laboratories with the ghost of their structural schemes are also briefly considered. The elements included in remote real-virtual laboratories with ghost descriptions of functions performed in laboratories are described. Goal. To develop a conceptual model of a real-virtual laboratory, proposing its structural and functional scheme and defining the main blocks of a real-virtual laboratory, their functions, as well as the connections between them. Methods. To develop a new structure for a real-virtual laboratory, it is necessary to analyze known scientific results and practical solutions, for which scientific publications published in various sources in English and Russian are used, as well as programming methods of modern controllers, their means of communication with computers and laboratory equipment, and methods of network programming. Results. A brief overview of the existing remote laboratories with a ghost of their structure and a description of the mechanism of interaction of the remote user with the laboratory is made. A structural and functional scheme of a real-virtual laboratory is proposed, its main blocks and connections between them are determined. For the purposes of formalization, information transformation modules have been introduced, illustrating the transformation of each block of input and internal variables and characteristics into output. Conclusion. As a result of reviewing some of the remote laboratories' realizations, it was concluded that most of them were built using a foreign paid development environment. In this regard, taking into account the general situation in the world and specifically in our country, we can conclude that the development of its own implementation of a remote laboratory in the domestic development environment is a necessary measure. The paper presents a structural and functional scheme of the RVL, reflecting its block structure. The process of functioning of the laboratory reflects the modules of information transformation of input variables and parameters into output characteristics. This formalism can be used to build a functional model of a real-virtual laboratory.

Keywords


real-virtual laboratory; information transformation module; microcontroller; sensors; performers; experiment control

References


СВИП – система виртуальных инструментов и приборов / В.М. Дмитриев, Т.В. Ганджа, В.В. Ганджа, Ю.И. Мальцев. Томск: В-Спектр, 2014. 216 с.

МАРС – среда моделирования технических устройств и систем / В.М. Дмитриев, А.В. Шутенков, Т.Н. Зайченко, Т.В. Ганджа. Томск: В-Спектр, 2011. 278 c.

Дмитриев В.М., Ганджа Т.В., Панов С.А. Система виртуальных инструментов и приборов для автоматизации учебных и научных экспериментов // Международный журнал «Программные продукты и системы». 2016. Т. 32. С. 154–162. DOI: 10.15827/0236-235X.115.154-162

Naumovic M.B., Zivanovic D. Remote Experiments in Control Engineering Education Laboratory // International Journal of Online Engineering. 2008. Vol. 4, no. 2. P. 48–53. DOI: 10.3991/ijoe.v4i2.447

Тревис Д. LabVIEW для всеx: пер. с англ. М.: ДМК Пресс, 2004. 537 с.

AIM-Lab: a system for remote characterization of electronic devices and circuits over

the Internet / T.A. Fieldly, M.S. Shur, H. Shen, T. Ytterdal // Proceedings of the 2000 Third IEEE International Caracas Conference on Devices, Circuits and Systems. 2000. P. I43/1–I43/6. DOI: 10.1109/ICCDCS.2000.869858

Fjeldly T.A., Stradman O.J., Berntzen R. Lab-on-Web – A Comprehensive Electronic Device Laboratory On A Chip Accessible Via Internet // International Conference on Engineering Education. Manchester, U.K., 2002. P. 1–5.

Fjeldly T.A., Shur M.S., Shen H., Ytterdal T. AIM-Lab: Lab-on-Web: performing device characterization via Internet using modern Web technology // Proceedings of the Fourth IEEE International Caracas Conference on Devices, Circuits and Systems. 2002. P. I022–I022. DOI: 10.1109/ICCDCS.2002.1004079

Лебедев К.Н., Лебедев П.К. Автоматизированный стенд для проведения лабораторных работ по электротехническим дисциплинам // Агротехника и энергообеспечение. 2020. № 4 (29).

С. 64–71.

Виртуальная лаборатория для дистанционного обучения методам проектирования микропроцессорных систем / Е.Д. Баран, Н.В. Голошевский, П.М. Захаров, Б.М. Рогачевский // Образовательные, научные и инженерные приложения в среде LabVIEW и технологии National instruments: сб. тр. конф. М.: Российский университет дружбы народов, 2003. С. 28–31.

Баран Е.Д., Любенко А.Ю. Лабораторный практикум для дистанционного обучения общетехническим дисциплинам. URL: https://nitec.nstu.ru/library/publications/articles/pdf/nitec_lab_ practice.pdf (дата обращения: 5.03.2022).

Компьютерное моделирование физических задач / В.М. Дмитриев, А.Ю. Филиппов,

Т.В. Ганджа, И.В. Дмитриев. Томск: В-Спектр, 2010. 248 c.

Дмитриев В.М., Ганджа Т.В. Среда многоуровневого моделирования химико-технологи¬ческих систем. Томск: Изд-во ТГУ, 2017. 330 с.

Дмитриев В.М., Шутенков А.В., Ганджа Т.В. Элементы и устройства роботизированных систем. Томск: Изд-во ТУСУР, 2020. 355 с.

Программно-аппаратное и информационное обеспечение лаборатории элементов и устройств роботизированных систем / В.М. Дмитриев, В.М. Рулевский, Т.В. Ганджа и др. Томск: Изд-во ТУСУР, 2021. 185 с.

Дмитриев В.М., Арайс Л.А., Шутенков А.В. Автоматизация моделирования промышленных роботов. М.: Машиностроение, 1995. 300 с.




DOI: http://dx.doi.org/10.14529/ctcr220201

Refbacks

  • There are currently no refbacks.