Исследование нелинейной цифровой фильтрации сигналов с использованием генеративно-состязательной нейронной сети
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Цибулис Д.Э., Рагозин А.Н., Даровских С.Н. Исследование цифровой фильтрации информационного сигнала с использованием искусственной нейронной сети автокодировщика // Инфокоммуникационные технологии: актуальные вопросы цифровой экономики: сб. науч. тр. II Междунар. науч.-практ. конф., Екатеринбург, 26–27 января 2022 года / под ред. В.П. Шувалова., сост. М.П. Карачарова. 2022. С. 144–149. EDN MNBGOL.
Цибулис Д.Э., Рагозин А.Н. Анализ информационных сигналов с использованием генеративно-состязательных нейронных сетей // Безопасность информационного пространства: сб. тр. XIX Всерос. науч.-практ. конф. студентов, аспирантов и молодых ученых, Екатеринбург, 08–11 декабря 2020 года. 2021. С. 40–44. EDN BCYSYJ.
Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение / пер. с англ. А. А. Слинкина. 2-е изд., испр. М.: ДМК Пресс, 2018. 652 с.
Зеленский А.А., Письменскова М.Н., Воронин В.В. Алгоритм поиска изображений в виде хэш-функций на основе глубинных нейросетевых технологий // Доклады Томского государственного университета систем управления и радиоэлектроники. 2018. Т. 21, № 3. С. 57–62.
Акинина А.Н., Никифоров М.Б. Алгоритм детектирования несанкционированных свалок мусора на основе анализа данных дистанционного зондирования Земли // Известия Тульского государственного университета. Технические науки. 2019. № 10. С. 321–329.
Анализ методов многомодального объединения информации для аудиовизуального распознавания речи / Д.В. Иванько, И.С. Кипяткова, А.Л. Ронжин, А.А. Карпов // Научно-технический вестник информационных технологий, механики и оптики. 2016. Т. 16, № 3. С. 387–401.
Детектирование неизвестных звуков для людей с нарушенным слухом на основе вариационного автоэнкодера / А.Х. Сарафасланян, В.В. Чепраков, Д.А. Суворов и др. // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2019. № 1 (124). С. 35–49.
Generative Adversarial Networks / I. Goodfellow, J. Pouget-Abadie, M. Mirza et al. Department of Computer Science and Research, University of Montreal. Montreal. QC H3C 3J7.
Arjovsky M., Chintala S., Bottou L. Wasserstein GAN. 06.12.2017. [Электронный ресурс]. URL: https://arxiv.org/pdf/1701.07875.pdf.
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks / Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros. University of California at Berkeley, in ICCV, 2017. URL: https://junyanz.github.io/CycleGAN/.
Hesse C. Image-to-Image Demo. Interactive Image Translation with pix2pix-tensorflow. 2017. [Электронный ресурс]. URL: http://www.newart.ru/htm/flash/risovalka_90.php.
Татузов А.Л. Нейронные сети в задачах радиолокации. Кн. 28. М.: Радиотехника, 2009. 432 с. (Научная серия «Нейрокомпьютеры и их применение»).
Аксенов С.В., Новосельцев В.Б. Организация и использование нейронных сетей (методы и технологии) / под общ. ред. В.Б. Новосельцева. Томск: Изд-во НТЛ, 2006. 128 с.
Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы / пер. с польск. И.Д. Рудинского. 2-е изд., стереотип. М.: Горячая линия – Телеком, 2013. 384 с.:
Фокин Г.А. Технологии программно-конфигурируемого радио: учеб. пособие для вузов. М.: Горячая линия – Телеком, 2019. – 316 с.
DOI: http://dx.doi.org/10.14529/ctcr220215
Ссылки
- На текущий момент ссылки отсутствуют.